Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Am J Bot ; 111(2): e16275, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303667

ABSTRACT

PREMISE: Snow is an important environmental factor affecting plant distribution. Past changes in snowfall regimes may have controlled the demographies of snow-dependent plants. However, our knowledge of changes in the distribution and demographies of such plants is limited because of the lack of fossil records. METHODS: Population genetic and landscape genetic analyses were used to investigate the response of population dynamics of Arnica mallotopus (Asteraceae)-a plant confined to heavy-snow areas of Japan-to changes in snowfall regimes from the Last Glacial Period to the Holocene. RESULTS: The population genetic analysis suggested that the four geographic lineages diverged during the Last Glacial Period. The interaction between reduced snowfall and lower temperatures during this period likely triggered population isolation in separate refugia. Subpopulation differentiation in the northern group was lower than in the southern group. Our ecological niche model predicted that the current distribution was patchy in the southern region; that is, the populations were isolated by topologically flat and climatically unsuitable lowlands. The landscape genetic analysis suggested that areas with little snowfall acted as barriers to the Holocene expansion of species distribution and continued limiting gene flow between local populations. CONCLUSIONS: These findings indicate that postglacial population responses vary among regions and are controlled by environmental and geographic factors. Thus, changes in snowfall regime played a major role in shaping the distribution and genetic structure of the snow-dependent plant.


Subject(s)
Arnica , Genetic Variation , Japan , Snow , Population Dynamics
2.
Genes Genet Syst ; 97(2): 93-99, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35545526

ABSTRACT

Interspecific hybridization is a critical issue in conservation biology because it may drive small populations to extinction through direct or indirect processes. In this study, to develop a conservation strategy for an endangered rear-edge population of Carex podogyna in Ashiu, Kyoto, Japan, we performed a molecular genetic analysis of the wild population and an ex-situ population established from wild seeds. Microsatellite genotypic data revealed a complete loss of genetic diversity in the wild population, suggesting that it has long been prone to genetic drift due to isolation as a small population. In contrast, microsatellite analysis of 13 ex-situ individuals detected multiple alleles that are not harbored in the wild C. podogyna population. Sequence analysis revealed that these individuals are likely natural hybrids between C. podogyna and a co-occurring species, C. curvicollis, although established hybrids have never been found in the natural habitat. Based on our observation of variegated leaves in hybrid individuals, we propose that hybrids have been excluded by natural selection and/or interspecific competition caused by insufficient productivity of photosynthesis, although other genetic and ecological factors may also be influential. Overall, this study indicates that natural mechanisms selectively removing the hybrids have maintained the genetic purity of this rear-edge population of C. podogyna, and also emphasizes the importance of genetic assessment in ex-situ conservation programs.


Subject(s)
Carex Plant , Cyperaceae , Carex Plant/genetics , Cyperaceae/genetics , Genetic Variation , Genotype , Humans , Hybridization, Genetic , Microsatellite Repeats
4.
Ecol Evol ; 11(18): 12445-12452, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594511

ABSTRACT

In response to volatiles emitted from a plant infested by herbivorous arthropods, neighboring undamaged conspecific plants become better defended against herbivores; this is referred to as plant‒plant communication. Although plant‒plant communication occurs in a wide range of plant species, most studies have focused on herbaceous plants. Here, we investigated plant‒plant communication in beech trees in two experimental plantations in 2018 and one plantation in 2019. Approximately 20% of the leaves of a beech tree were clipped in half in the spring seasons of 2018 and 2019 (clipped tree). The damage levels to leaves in the surrounding undamaged beech trees were evaluated 90 days after the clipping (assay trees). In both years, the damage levels decreased with a reduction in the distance from the clipped tree. In 2019, we also recorded the damage levels of trees that were not exposed to volatiles (nonexposed trees) as control trees and found that those that were located <5 m away from clipped trees had significantly less leaf damage than nonexposed trees. By using a gas chromatograph-mass spectrometer, ten and eight volatile compounds were detected in the headspaces of clipped and unclipped leaves, respectively. Among them, the amount of (Z)-3-hexenyl acetate in clipped leaves was significantly higher than that in nonclipped leaves. Our result suggests that green leaf volatiles such as (Z)-3-hexenol and (Z)-3-hexenyl acetate and other volatile organic compounds emitted from clipped trees induced defenses in the neighboring trees within the 5 m radius. The effective distances of plant‒plant communication in trees were discussed from the viewpoint of the arthropod community structure in forest ecosystems.

5.
Sci Rep ; 11(1): 18712, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548522

ABSTRACT

Species coexistence is a result of biotic interactions, environmental and historical conditions. The Janzen-Connell hypothesis assumes that conspecific negative density dependence (CNDD) is one of the local processes maintaining high species diversity by decreasing population growth rates at high densities. However, the contribution of CNDD to species richness variation across environmental gradients remains unclear. In 32 large forest plots all over the Japanese archipelago covering > 40,000 individual trees of > 300 species and based on size distributions, we analysed the strength of CNDD of individual species and its contribution to species number and diversity across altitude, mean annual temperature, mean annual precipitation and maximum snow depth gradients. The strength of CNDD was increasing towards low altitudes and high tree species number and diversity. The effect of CNDD on species number was changing across altitude, temperature and snow depth gradients and their combined effects contributed 11-18% of the overall explained variance. Our results suggest that CNDD can work as a mechanism structuring forest communities in the Japanese archipelago. Strong CNDD was observed to be connected with high species diversity under low environmental limitations where local biotic interactions are expected to be stronger than in niche-based community assemblies under high environmental filtering.

6.
Genes Genet Syst ; 96(3): 159-164, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34148896

ABSTRACT

Arnica mallotopus is a perennial herb endemic to the snowy regions of Japan. At the southern edge of its distribution, in Kyoto Prefecture, overgrazing by sika deer and decreased snowfall have resulted in the rapid decline of A. mallotopus populations. Therefore, there is an urgent need for a conservation genetic analysis of the remaining local populations. In this study, we first developed 13 EST-SSR markers to evaluate genetic variation in A. mallotopus. The average number of alleles per locus was 5.33. Genetic analysis using these markers showed that the investigated samples were classified into two groups corresponding to landscape structure. One group isolated from a tributary of the Yura River showed a strong population bottleneck signal, likely resulting from founder effects and subsequent drifts. On the other hand, the genetic diversity of the second group in the main distribution along the Yura River was higher and less inbred. Overall, our assessment suggested recognizing the two genetic groups as management units in conservation programs for the threatened populations.


Subject(s)
Arnica , Asteraceae , Deer , Animals , Deer/genetics , Expressed Sequence Tags , Genetic Variation , Microsatellite Repeats
7.
PLoS One ; 15(6): e0225872, 2020.
Article in English | MEDLINE | ID: mdl-32555639

ABSTRACT

Deer overabundance is a contributing factor in the degradation of plant communities and ecosystems worldwide. The management and conservation of the deer-affected ecosystems requires us to urgently grasp deer population trends and to identify the factors that affect them. In this study, we developed a Bayesian state-space model to estimate the population dynamics of sika deer (Cervus nippon) in a cool-temperate forest in Japan, where wolves (Canis lupus hodophilax) are extinct. The model was based on field data collected from block count surveys, road count surveys by vehicles, mortality surveys during the winter, and nuisance control for 12 years (2007-2018). We clarified the seasonal and annual fluctuation of the deer population. We found a peak of deer abundance (2010) over 12 years. In 2011 the estimated deer abundance decreased drastically and has remained at a low level then. The deer abundance gradually increased from April to December during 2013-2018. The seasonal fluctuation we detected could reflect the seasonal migration pattern of deer and the population recruitment through fawn births in early summer. In our model, snowfall accumulation, which can be a lethal factor for deer, may have slightly affected their mortality during the winter. Although we could not detect a direct effect of snow on population dynamics, snowfall decrease due to global warming may decelerate the winter migration of deer; subsequently, deer staying on-site may intensively forage evergreen perennial plants during the winter season. The nuisance control affected population dynamics. Even in wildlife protection areas and national parks where hunting is regulated, nuisance control could be effective in buffering the effect of deer browsing on forest ecosystems.


Subject(s)
Deer , Models, Statistical , Seasons , Animals , Bayes Theorem , Population Dynamics
8.
PLoS One ; 11(4): e0152219, 2016.
Article in English | MEDLINE | ID: mdl-27035709

ABSTRACT

Tree growth, especially diameter growth of tree stems, is an important issue for understanding the productivity and dynamics of forest stands. Metabolic scaling theory predicted that the 2/3 power of stem diameter at a certain time is a linear function of the 2/3 power of the initial diameter and that the diameter growth rate scales to the 1/3 power of the initial diameter. We tested these predictions of the metabolic scaling theory for 11 Japanese secondary forests at various growth stages. The predictions were not supported by the data, especially in younger stands. Alternatively, we proposed a new theoretical model for stem diameter growth on the basis of six assumptions. All these assumptions were supported by the data. The model produced a nearly linear to curvilinear relationship between the 2/3 power of stem diameters at two different times. It also fitted well to the curvilinear relationship between diameter growth rate and the initial diameter. Our model fitted better than the metabolic scaling theory, suggesting the importance of asymmetric competition among trees, which has not been incorporated in the metabolic scaling theory.


Subject(s)
Forests , Trees/growth & development , Algorithms , Biomass , Computer Simulation , Models, Biological , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plant Stems/metabolism , Trees/anatomy & histology , Trees/metabolism
9.
Ecol Appl ; 25(5): 1433-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26485966

ABSTRACT

Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.


Subject(s)
Biomass , Forests , Models, Biological , Environmental Monitoring , Japan , Population Dynamics
10.
Glob Chang Biol ; 21(9): 3436-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25712048

ABSTRACT

Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.


Subject(s)
Biodiversity , Forests , Global Warming , Trees/physiology , Japan , Population Dynamics , Temperature
11.
Am J Bot ; 100(2): 346-56, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23306938

ABSTRACT

PREMISE OF THE STUDY: Branch growth and its spatial arrangement determine crown architecture, leaf display, and, thus, the productivity of trees. Branch axes elongate by the sequential production of shoots with differing morphology and function, such as short shoots and long shoots. This study investigated ontogenetic changes in axis growth in Betula maximowicziana and quantified the role of axis reversal between the short-shoot and long-shoot habits, particularly reversal from the short-shoot to the long-shoot habit. METHODS: From 8 trees with varying levels of growth vigor, 716 branch axes forming the basic crown architecture were sampled. Past growth of the branch axes was reconstructed from leaf and bud scale scars and compared between slow-growing and vigorously growing trees. KEY RESULTS: Branch axes reversed more frequently between the long- and short-shoot habits in slow-growing trees than in vigorously growing trees. Short-shoot-origin axes that reversed to the long-shoot habit lived for longer periods and grew larger than axes that remained in the short-shoot habit. Short-shoot-origin axes reversed as they grew away from branch apices, typically >6 yr after they had originated. CONCLUSIONS: Reversal of short-shoot-origin axes to the long-shoot habit is an endogenous growth process of trees with reduced vigor. Like epicormic branching, the reversal may contribute to the maintenance of productivity of large old trees by prolonging axis longevity and filling the inner part of the crown. This study presents an ontogenetic change in branch growth, which broadens our perspectives on the growth and survival of long-living trees.


Subject(s)
Betula/growth & development , Plant Shoots/growth & development , Trees/growth & development , Betula/anatomy & histology , Plant Shoots/anatomy & histology , Trees/anatomy & histology
12.
Ann Bot ; 104(6): 1195-205, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19734164

ABSTRACT

BACKGROUNDS AND AIMS: Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa. METHODS: The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated. KEY RESULTS: Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation. CONCLUSIONS: Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees.


Subject(s)
Betula/physiology , Seasons , Trees/physiology , Flowers/physiology , Models, Biological , Plant Leaves/anatomy & histology , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Population Dynamics , Reproduction
13.
J Plant Res ; 119(5): 459-67, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16941062

ABSTRACT

Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.


Subject(s)
Euphorbiaceae/anatomy & histology , Euphorbiaceae/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Light , Photosynthesis/physiology , Plant Leaves/radiation effects , Population Dynamics , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...