Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Article in English | MEDLINE | ID: mdl-38823432

ABSTRACT

OBJECTIVE: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS: There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS: To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.

2.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853939

ABSTRACT

A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the most optimal transparency for light sheet microscopy imaging. We then modified the DISCO protocol to enhance binding and penetration of antibodies used for labeling nerves. Using the pan-neuronal PGP9.5 antibody, our protocol allowed 3D visualization of innervation in and around the mouse knee joint. We then implemented the workflow in mice intra-articularly injected with nerve growth factor (NGF) to determine whether changes in the nerve density can be observed. Both 3D and 2D analytical approaches of the light sheet microscopy images demonstrated quantifiable changes in midjoint nerve density following 4 weeks of NGF injection in the medial but not in the lateral joint compartment. We provide, for the first time, a comprehensive workflow that allows detailed and quantifiable examination of mouse knee joint innervation in 3D.

3.
Mol Pain ; : 17448069241258106, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752471

ABSTRACT

Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region 2 domain-containing phosphatase-1 (SHP-1, encoded by Ptpn6) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization. Therefore, our goal was to determine the impact of Ptpn6 overexpression on TRPV1-mediated neuronal responses and capsaicin-induced pain behavior in mice of both sexes. Twelve-week-old male and female mice overexpressing Ptpn6 (Shp1-Tg) and their wild type (WT) littermates were used. Ptpn6 overexpression was confirmed in the DRG of Shp1-Tg mice by RNA in situ hybridization and RT-qPCR. Trpv1 and Ptpn6 were found to be co-expressed in DRG sensory neurons in both genotypes. Functionally, this overexpression resulted in lower magnitude intracellular calcium responses to 200 nM capsaicin stimulation in DRG cultures from Shp1-Tg mice compared to WTs. In vivo, we tested the effects of Ptpn6 overexpression on capsaicin-induced pain through a model of capsaicin footpad injection. While capsaicin injection evoked nocifensive behavior (paw licking) and paw swelling in both genotypes and sexes, only WT mice developed mechanical allodynia after capsaicin injection. We observed similar level of TRPV1 protein expression in the DRG of both genotypes, however, a higher amount of tyrosine phosphorylated TRPV1 was detected in WT DRG. These experiments suggest that, while SHP-1 does not mediate the acute swelling and nocifensive behavior induced by capsaicin, it does mediate a protective effect against capsaicin-induced mechanical allodynia in both sexes. The protective effect of SHP-1 might be mediated by TRPV1 dephosphorylation in capsaicin-sensitive sensory neurons of the DRG.

4.
bioRxiv ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37904981

ABSTRACT

Background: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results: There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions: To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.

5.
Arthritis Rheumatol ; 75(10): 1770-1780, 2023 10.
Article in English | MEDLINE | ID: mdl-37096632

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a leading cause of chronic pain, yet OA pain management remains poor. Age is the strongest predictor of OA development, and mechanisms driving OA pain are unclear. We undertook this study to characterize age-associated changes in knee OA, pain-related behaviors, and dorsal root ganglion (DRG) molecular phenotypes in mice of both sexes. METHODS: Male or female C57BL/6 mice 6 or 20 months of age were evaluated for histopathologic knee OA, pain-related behaviors, and L3-L5 DRG immune characterization via flow cytometry. DRG gene expression in older mice and humans was also examined. RESULTS: Male mice at 20 months of age had worse cartilage degeneration than 6-month-old mice. Older female mouse knees showed increased cartilage degeneration but to a lesser degree than those of male mice. Older mice of both sexes had worse mechanical allodynia, knee hyperalgesia, and grip strength compared to younger mice. For both sexes, DRGs from older mice showed decreased CD45+ cells and a significant increase in F4/80+ macrophages and CD11c+ dendritic cells. Older male mouse DRGs showed increased expression of Ccl2 and Ccl5, and older female mouse DRGs showed increased Cxcr4 and Ccl3 expression compared to 6-month-old mouse DRGs, among other differentially expressed genes. Human DRG analysis from 6 individuals >80 years of age revealed elevated CCL2 in men compared to women, whereas CCL3 was higher in DRGs from women. CONCLUSION: We found that aging in male and female mice is accompanied by mild knee OA, mechanical sensitization, and changes to immune cell populations in the DRG, suggesting novel avenues for development of OA therapies.


Subject(s)
Osteoarthritis, Knee , Mice , Humans , Female , Male , Animals , Infant , Osteoarthritis, Knee/complications , Ganglia, Spinal/metabolism , Immunophenotyping , Disease Models, Animal , Mice, Inbred C57BL , Pain/etiology , Hyperalgesia/metabolism
6.
Digestion ; 104(5): 348-356, 2023.
Article in English | MEDLINE | ID: mdl-37088071

ABSTRACT

INTRODUCTION: Non-esophageal eosinophilic gastrointestinal disorders (non-EoE EGIDs) are rare, but their prevalence has recently increased. Although it has been reported that one-half of patients with non-EoE EGIDs have intractable clinical courses, their clinical features are not fully understood. METHODS: This is a multicenter retrospective study in which 10 institutions in Japan participated. Clinical databases from January 1998 to December 2020 were reviewed to identify patients with non-EoE EGIDs. A total of 44 patients were identified; they were divided into two groups based on their clinical course: an intractable group and a non-intractable group. The clinical features were compared between the two groups by a logistic regression analysis. Remarkable eosinophilic infiltration (REI) was defined histologically when the maximal counts of mucosal eosinophils reached a threshold level in the respective area of biopsy. RESULTS: Prevalence of drug allergy and eosinophil counts more than 500/µL (EOS), vomiting symptoms, abnormalities of the stomach, duodenum, and jejunum on computed tomography (upper gastrointestinal abnormality on computed tomography [UACT]), and REI were significantly different between the two groups. Among the factors that were potentially associated with an intractable clinical course, logistic regression revealed that REI, EOS, and UACT were significant factors. Based on an analysis of the area under the receiver operator characteristic curve, a combination of REI and EOS had the lowest Akaike's information criterion, indicating the best model to predict an intractable clinical course. CONCLUSIONS: REI may predict an intractable course in patients with non-EoE EGIDs. In addition, the combination of REI and EOS was a better predictor than REI alone.


Subject(s)
Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/pathology , Retrospective Studies , Mucous Membrane , Disease Progression
7.
Arthritis Res Ther ; 25(1): 63, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061736

ABSTRACT

BACKGROUND: We aimed to explore activation of the Notch signaling pathway in knee-innervating lumbar dorsal root ganglia (DRG) in the course of experimental osteoarthritis (OA) in mice, and its role in knee hyperalgesia. METHODS: Cultured DRG cells were stimulated with the TLR4 agonist, lipopolysaccharide (LPS). Notch signaling in the cells was either inhibited with the γ-secretase inhibitor, DAPT, or with soluble Jagged1, or activated through immobilized Jagged1. CCL2 production was analyzed at mRNA and protein levels. In in vivo experiments, knee hyperalgesia was induced in naïve mice through intra-articular (IA) injection of LPS. The effect of inhibiting Notch signaling was examined by pre-injecting DAPT one hour before LPS. OA was induced through surgical destabilization of the medial meniscus (DMM) in male C57BL/6 mice. Gene expression in DRG was analyzed by qRT-PCR and RNAscope in situ hybridization. Activated Notch protein (NICD) expression in DRG was evaluated by ELISA and immunofluorescence staining. DAPT was injected IA 12 weeks post DMM to inhibit Notch signaling, followed by assessing knee hyperalgesia and CCL2 expression in the DRG. RESULTS: In DRG cell cultures, LPS increased NICD in neuronal cells. Inhibition of Notch signaling with either DAPT or soluble Jagged1 attenuated LPS-induced increases of Ccl2 mRNA and CCL2 protein. Conversely, activating Notch signaling with immobilized Jagged1 enhanced these LPS effects. In vivo, IA injection of LPS increased expression of Notch genes and NICD in the DRG. Pre-injection of DAPT prior to LPS alleviated LPS-induced knee hyperalgesia, and decreased LPS-induced CCL2 expression in the DRG. Notch signaling genes were differentially expressed in the DRG from late-stage experimental OA. Notch1, Hes1, and NICD were increased in the neuronal cell bodies in DRG after DMM surgery. IA administration of DAPT alleviated knee hyperalgesia post DMM, and decreased CCL2 expression in the DRG. CONCLUSIONS: These findings suggest a synergistic effect of Notch signaling with TLR4 in promoting CCL2 production and mediating knee hyperalgesia. Notch signaling is activated in knee-innervating lumbar DRG in mice with experimental OA, and is involved in mediating knee hyperalgesia. The pathway may therefore be explored as a target for alleviating OA pain.


Subject(s)
Hyperalgesia , Osteoarthritis , Male , Mice , Animals , Ganglia, Spinal/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Platelet Aggregation Inhibitors , Disease Models, Animal , Mice, Inbred C57BL , Osteoarthritis/metabolism , Arthralgia , Signal Transduction , RNA, Messenger/metabolism
8.
Nat Commun ; 14(1): 2479, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120427

ABSTRACT

Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.


Subject(s)
Nociceptors , Osteoarthritis , Animals , Mice , Male , Female , Humans , Nociceptors/metabolism , Pain/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Mice, Knockout , Arthralgia , Nerve Growth Factors/metabolism , Ganglia, Spinal/metabolism , Ion Channels/genetics , Ion Channels/metabolism
9.
Cell Rep ; 40(8): 111248, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001977

ABSTRACT

Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.


Subject(s)
Tamoxifen , Voltage-Gated Sodium Channels , Action Potentials , Ganglia, Spinal , Humans , Nociceptors , Pain/drug therapy , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
10.
Arthritis Res Ther ; 23(1): 103, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827672

ABSTRACT

BACKGROUND: C-C chemokine receptor 2 (CCR2) signaling plays a key role in pain associated with experimental murine osteoarthritis (OA) after destabilization of the medial meniscus (DMM). Here, we aimed to assess if CCR2 expressed by intra-articular sensory neurons contributes to knee hyperalgesia in the early stages of the model. METHODS: DMM surgery was performed in the right knee of 10-week-old male wild-type (WT), Ccr2 null, or Ccr2RFP C57BL/6 mice. Knee hyperalgesia was measured using a Pressure Application Measurement device. CCR2 receptor antagonist (CCR2RA) was injected systemically (i.p.) or intra-articularly (i.a.) at different times after DMM to test its ability to reverse knee hyperalgesia. In vivo Ca2+ imaging of the dorsal root ganglion (DRG) was performed to assess sensory neuron responses to CCL2 injected into the knee joint cavity. CCL2 protein in the knee was measured by ELISA. Ccr2RFP mice and immunohistochemical staining for the pan-neuronal marker, protein gene product 9.5 (PGP9.5), or the sensory neuron marker, calcitonin gene-related peptide (CGRP), were used to visualize the location of CCR2 on intra-articular afferents. RESULTS: WT, but not Ccr2 null, mice displayed knee hyperalgesia 2-16 weeks after DMM. CCR2RA administered i.p. alleviated established hyperalgesia in WT mice 4 and 8 weeks after surgery. Intra-articular injection of CCL2 excited sensory neurons in the L4-DRG, as determined by in vivo calcium imaging; responses to CCL2 increased in mice 20 weeks after DMM. CCL2, but not vehicle, injected i.a. rapidly caused transient knee hyperalgesia in naïve WT, but not Ccr2 null, mice. Intra-articular CCR2RA injection also alleviated established hyperalgesia in WT mice 4 and 7 weeks after surgery. CCL2 protein was elevated in the knees of both WT and Ccr2 null mice 4 weeks after surgery. Co-expression of CCR2 and PGP9.5 as well as CCR2 and CGRP was observed in the lateral synovium of naïve mice; co-expression was also observed in the medial compartment of knees 8 weeks after DMM. CONCLUSIONS: The findings suggest that CCL2-CCR2 signaling locally in the joint contributes to knee hyperalgesia in experimental OA, and it is in part mediated through direct stimulation of CCR2 expressed by intra-articular sensory afferents.


Subject(s)
Arthralgia , Osteoarthritis, Knee , Receptors, CCR2 , Animals , Disease Models, Animal , Knee Joint , Male , Mice , Mice, Inbred C57BL , Pain , Receptors, CCR2/genetics , Sensory Receptor Cells
11.
Sci Rep ; 11(1): 210, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33420253

ABSTRACT

Mechanochemical reactions can be induced in a solution by the collision of balls to produce high-temperature and high-pressure zones, with the reactions occurring through a dissolution-precipitation mechanism due to a change in solubility. However, only a fraction of the impact energy contributes to the mechanochemical reactions, while the rest is mainly consumed by the wear of balls and the heat generation. To clarify whether the normal or tangential component of collisions makes a larger contribution on the reaction, herein we studied the effect of collision direction on a wet mechanochemical reaction through combined analysis of the experimental reaction rates and simulated ball motion. Collisions of balls in the normal direction were found to contribute strongly to the wet mechanochemical reaction. These results could be used to improve the synthesis efficiency, predict the reaction, and lower the wear in the wet mechanochemical reactions.

12.
JCI Insight ; 3(6)2018 03 22.
Article in English | MEDLINE | ID: mdl-29563338

ABSTRACT

Pain is the predominant symptom of osteoarthritis, but the connection between joint damage and the genesis of pain is not well understood. Loss of articular cartilage is a hallmark of osteoarthritis, and it occurs through enzymatic degradation of aggrecan by cleavage mediated by a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS-4) or ADAMTS-5 in the interglobular domain (E373-374A). Further cleavage by MMPs (N341-342F) releases a 32-amino-acid aggrecan fragment (32-mer). We investigated the role of this 32-mer in driving joint pain. We found that the 32-mer excites dorsal root ganglion nociceptive neurons, both in culture and in intact explants. Treatment of cultured sensory neurons with the 32-mer induced expression of the proalgesic chemokine CCL2. These effects were mediated through TLR2, which we demonstrated was expressed by nociceptive neurons. In addition, intra-articular injection of the 32-mer fragment provoked knee hyperalgesia in WT but not Tlr2-null mice. Blocking the production or action of the 32-mer in transgenic mice prevented the development of knee hyperalgesia in a murine model of osteoarthritis. These findings suggest that the aggrecan 32-mer fragment directly activates TLR2 on joint nociceptors and is an important mediator of the development of osteoarthritis-associated joint pain.


Subject(s)
Aggrecans/metabolism , Arthralgia/metabolism , Osteoarthritis/metabolism , Toll-Like Receptor 2/metabolism , ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism , Animals , Calcium/metabolism , Cartilage, Articular/metabolism , Chemokine CCL2/metabolism , Disease Models, Animal , Ganglion Cysts/metabolism , Matrix Metalloproteinases , Mice , Mice, Knockout , Mice, Transgenic , Osteoarthritis/genetics , Toll-Like Receptor 2/genetics
13.
Arthritis Rheumatol ; 70(1): 88-97, 2018 01.
Article in English | MEDLINE | ID: mdl-28992367

ABSTRACT

OBJECTIVE: To develop a method for analyzing sensory neuron responses to mechanical stimuli in vivo, and to evaluate whether these neuronal responses change after destabilization of the medial meniscus (DMM). METHODS: DMM or sham surgery was performed in 10-week-old male C57BL/6 wild-type or Pirt-GCaMP3+/- mice. All experiments were performed 8 weeks after surgery. Knee and hind paw hyperalgesia were assessed in wild-type mice. The retrograde label DiI was injected into the ipsilateral knee to quantify the number of knee-innervating neurons in the L4 dorsal root ganglion (DRG) in wild-type mice. In vivo calcium imaging was performed on the ipsilateral L4 DRG of Pirt-GCaMP3+/- mice as mechanical stimuli (paw pinch, knee pinch, or knee twist) were applied to the ipsilateral hind limb. RESULTS: Eight weeks after surgery, mice subjected to DMM had more hyperalgesia in the knee and hind paw compared to mice subjected to sham surgery. Intraarticular injection of DiI labeled similar numbers of neurons in the L4 DRG of mice subjected to sham surgery and mice subjected to DMM. Increased numbers of sensory neurons responded to all 3 mechanical stimuli in mice subjected to DMM, as assessed by in vivo calcium imaging. The majority of responses in mice subjected to sham surgery and mice subjected to DMM were in small to medium-sized neurons, consistent with the size of nociceptors. The magnitude of responses was similar between mice subjected to sham surgery and mice subjected to DMM. CONCLUSION: Our findings indicate that increased numbers of small to medium-sized DRG neurons respond to mechanical stimuli 8 weeks after DMM surgery, suggesting that nociceptors have become sensitized by lowering the response threshold.


Subject(s)
Calcium/metabolism , Hyperalgesia/etiology , Knee Joint/physiopathology , Neurons/physiology , Osteoarthritis, Knee/physiopathology , Animals , Central Nervous System Sensitization/physiology , Disease Models, Animal , Fluorescent Antibody Technique , Knee Joint/innervation , Male , Menisci, Tibial/surgery , Mice , Mice, Inbred C57BL , Nociceptors/physiology , Osteoarthritis, Knee/surgery
14.
Arthritis Rheumatol ; 69(7): 1429-1439, 2017 07.
Article in English | MEDLINE | ID: mdl-28380690

ABSTRACT

OBJECTIVE: To determine the ability of drugs that activate inhibitory G protein-coupled receptors (GPCRs) expressed in peripheral voltage-gated sodium channel 1.8 (NaV 1.8)-positive sensory neurons to control osteoarthritis (OA)-associated pain. METHODS: We used designer receptors exclusively activated by a designer drug (DREADD) technology, which employs engineered GPCRs to activate or inhibit neurons upon binding the synthetic ligand clozapine N-oxide (CNO). NaV 1.8-Pdi C57BL/6 mice were generated to express the inhibitory DREADD receptor Pdi in NaV 1.8-expressing sensory neurons. Destabilization of the medial meniscus (DMM) surgery was performed in 10-week-old male mice. Four, 8, 12, or 16 weeks after surgery, knee hyperalgesia or hind paw mechanical allodynia was tested. Subsequently, CNO or vehicle was administered, and the effect on pain-related behaviors was measured by a blinded observer. Morphine was used as a control. RESULTS: Immunohistochemistry and electrophysiology confirmed functional expression of the inhibitory DREADD receptor Pdi by NaV 1.8-positive sensory neurons. Acute inhibition of NaV 1.8-expressing neurons in mice treated with CNO reduced knee hyperalgesia 4 weeks after DMM surgery and reduced mechanical allodynia 8 weeks after DMM surgery. Inhibition had no effect on pain-related behaviors 12 and 16 weeks after DMM surgery. Morphine, a drug that activates GPCRs in the peripheral and central nervous systems, was still effective in the later stage of experimental OA. CONCLUSION: Chemogenetic inhibition of NaV 1.8-expressing neurons blocks knee hyperalgesia and mechanical allodynia in early experimental OA, but is no longer efficacious in the later stages. These data indicate that activation of inhibitory GPCRs located solely outside the central nervous system may be ineffective in treating chronic OA pain.


Subject(s)
Arthralgia/physiopathology , Arthritis, Experimental/physiopathology , Behavior, Animal/drug effects , Clozapine/analogs & derivatives , Hyperalgesia/physiopathology , Neural Inhibition/drug effects , Neurons/drug effects , Osteoarthritis, Knee/physiopathology , Animals , Arthritis, Experimental/pathology , Clozapine/pharmacology , Disease Models, Animal , Fluorescent Antibody Technique , Ganglia, Spinal/cytology , Immunohistochemistry , Knee Joint/pathology , Male , Menisci, Tibial/surgery , Mice , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Neurons/physiology , Osteoarthritis, Knee/pathology , Patch-Clamp Techniques , Receptors, G-Protein-Coupled/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
15.
J Gastroenterol ; 52(2): 211-217, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27121685

ABSTRACT

BACKGROUND: We recently demonstrated that cascade stomach detected by barium studies was correlated with upper gastrointestinal symptoms. We developed a new endoscopic classification of cascade stomach and examined its relationship with reflux esophagitis. METHODS: Study 1: the classification (grades 0-3) was based on detecting a ridge that runs from the cardia toward the anterior wall crossing the greater curvature. Inter-observer variation was evaluated by kappa statistics when ten experienced endoscopists used this classification three times each. Study 2: in 710 consecutive subjects (500 men and 210 women) undergoing endoscopic screening, the grade of cascade stomach and incidence of reflux esophagitis were compared. RESULTS: In study 1, the kappa values at the third assessment were 0.85, 0.58, 0.50, and 0.78 for each grade, respectively, while overall agreement was 0.68. In study 2, the incidence of reflux esophagitis in men was 20 % in grade 0, 17 % in grade 1, 25 % in grade 2, and 30 % in grade 3, showing significant differences. Among women, the incidence of reflux esophagitis in each grade was 9, 3, 6, and 35 %, respectively, also showing significant differences. Multivariate analysis showed that independent risk factors for reflux esophagitis were cascade stomach (odds ratio = 2.20), body mass index, and hiatus hernia in men, as well as cascade stomach (odds ratio = 9.01) and smoking tobacco in women. CONCLUSIONS: This endoscopic classification of cascade stomach showed acceptable inter-observer variation. Cascade stomach is a risk factor for reflux esophagitis.


Subject(s)
Endoscopy, Gastrointestinal/methods , Esophagitis, Peptic/diagnosis , Stomach Diseases/diagnosis , Adult , Aged , Body Mass Index , Esophagitis, Peptic/epidemiology , Esophagitis, Peptic/etiology , Female , Hernia, Hiatal/complications , Humans , Incidence , Male , Middle Aged , Multivariate Analysis , Observer Variation , Risk Factors , Sex Factors , Stomach Diseases/classification , Stomach Diseases/complications
16.
Arthritis Rheumatol ; 67(11): 2933-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26245312

ABSTRACT

OBJECTIVE: To determine whether selected damage-associated molecular patterns (DAMPs) present in the osteoarthritic (OA) joints of mice excite nociceptors through Toll-like receptor 4 (TLR-4). METHODS: The ability of S100A8 and α2 -macroglobulin to excite nociceptors was determined by measuring the release of monocyte chemoattractant protein 1 (MCP-1) by cultured dorsal root ganglion (DRG) cells as well as by measuring the intracellular calcium concentration ([Ca(2+) ]i ) in cultured DRG neurons from naive mice or from mice that had undergone surgical destabilization of the medial meniscus (DMM) 8 weeks previously. The role of TLR-4 was assessed using TLR-4(-/-) cells or a TLR-4 inhibitor. The [Ca(2+) ]i in neurons within ex vivo intact DRGs was measured in samples from Pirt-GCaMP3 mice. Neuronal expression of the Tlr4 gene was determined by in situ hybridization. DMM surgery was performed in wild-type and TLR-4(-/-) mice; mechanical allodynia was monitored, and joint damage was assessed histologically after 16 weeks. RESULTS: DRG neurons from both naive and DMM mice expressed Tlr4. Both S100A8 and α2 -macroglobulin stimulated release of the proalgesic chemokine MCP-1 in DRG cultures, and the neurons rapidly responded to S100A8 and α2 -macroglobulin with increased [Ca(2+) ]i . Blocking TLR-4 inhibited these effects. Neurons within intact DRGs responded to the TLR-4 agonist lipopolysaccharide. In both of the calcium-imaging assays, it was primarily the nociceptor population of neurons that responded to TLR-4 ligands. TLR-4(-/-) mice were not protected from mechanical allodynia or from joint damage associated with DMM. CONCLUSION: Our experiments suggest a role of TLR-4 signaling in the excitation of nociceptors by selected DAMPs. Further research is needed to delineate the importance of this pathway in relation to OA pain.


Subject(s)
Neurons/metabolism , Nociceptors/metabolism , Osteoarthritis/metabolism , Toll-Like Receptor 4/metabolism , Animals , Calcium/metabolism , Calgranulin A/administration & dosage , Cells, Cultured , Chemokine CCL2/metabolism , Disease Models, Animal , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Male , Mice , Mice, Knockout , Neurons/drug effects , Toll-Like Receptor 4/genetics , alpha-Macroglobulins/pharmacology
17.
Curr Osteoporos Rep ; 13(5): 318-26, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26233284

ABSTRACT

Knee osteoarthritis is characterized by progressive damage and remodeling of all tissues in the knee joint. Pain is the main symptom associated with knee osteoarthritis. Recent clinical and pre-clinical studies have provided novel insights into the mechanisms that drive the pain associated with joint destruction. In this narrative review, we describe current knowledge regarding the changes in the peripheral and central nervous systems that occur during the progression of osteoarthritis and discuss how therapeutic interventions may provide pain relief.


Subject(s)
Chronic Pain/etiology , Chronic Pain/therapy , Nociceptors/physiology , Osteoarthritis, Knee/physiopathology , Humans , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy
19.
Curr Microbiol ; 66(4): 337-43, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23224296

ABSTRACT

We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.


Subject(s)
Enterococcus/drug effects , Enterococcus/isolation & purification , Saliva/microbiology , Songbirds/microbiology , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Vancomycin Resistance , Animals , Anti-Bacterial Agents/pharmacology , Enterococcus/classification , Enterococcus/genetics , Kansas , Staphylococcus/classification , Staphylococcus/genetics , Vancomycin/pharmacology
20.
Clin J Gastroenterol ; 4(4): 207-211, 2011 Aug.
Article in English | MEDLINE | ID: mdl-26189521

ABSTRACT

A 74-year-old man had an endoscopic type 0'-IIc tumor in the upper gastric body on the greater curvature and biopsy showed the tumor to be a well-differentiated adenocarcinoma (Group 5). He was referred to us for endoscopic submucosal dissection (ESD). Endoscopy revealed fold convergency, fold swelling, and fusion of the fold, indicating tumor invasion into the submucosa, which was outside the indications for ESD. In addition, there was an increase of serum bone-type alkaline phosphatase (ALP-III and ALP-IV) and urinary cross-linked N-terminal telopeptide of type I collagen (a bone metabolism marker), while (18)F-fluorodeoxyglucose positron emission tomography showed increased uptake in the left pelvis and Th10, suggesting bone metastases. We first diagnosed gastric cancer with bone metastases; however, the symptoms suggested pathological bone fracture and no bone pain. Therefore, a computed tomography-guided aspiration bone biopsy was performed to exclude the possibility of Paget's disease of bone. Biopsy specimens revealed no tumor and a mosaic pattern. No increased uptake of (18)F-FAMT (L-[3-(18)F] α-methyltyrosine) supported a diagnosis of no bone metastases from gastric cancer. We finally diagnosed gastric cancer accompanied by Paget's disease of bone and performed a laparoscopy-assisted proximal gastrectomy. The pathological diagnosis was U less 0-IIb, and U post 0-IIc ypT1a (M) N0H0P0M0 yp stage IA. In gastric cancer patients with suspected bone metastasis, we also need to consider Paget's disease of bone.

SELECTION OF CITATIONS
SEARCH DETAIL
...