Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38543307

ABSTRACT

Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mammals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore, new treatment approaches are needed. Metal nanoparticles have attracted increased interest in the biomedical community in recent years because of their extremely high surface area to volume ratio and their unique reactivity that could be exploited for medicinal purposes. Previously, we confirmed the anti-Toxoplasma effects of gold, silver, and platinum nanoparticles, in a growth inhibition test. Here, we asked whether the anti-Toxoplasma effect could be confirmed with less expensive metal nanoparticles, specifically iron oxide nanoparticles (goethite and hematite). To improve the selective action of the nanoparticles, we modified the surface with l-tryptophan as our previous findings showed that the bio-modification of nanoparticles enhances their selectivity against T. gondii. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the successful coating of the iron oxide nanoparticles with l-tryptophan. Subsequently, cytotoxicity and growth inhibition assays were performed. L-tryptophan-modified nanoparticles showed superior anti-Toxoplasma action compared to their naked nanoparticle counterparts. L-tryptophan enhanced the selective toxicity of the iron oxide nanoparticles toward T. gondii. The bio-modified nanoparticles did not exhibit detectable host cell toxicity in the effective anti-Toxoplasma doses. To elucidate whether reactive oxygen species contribute to the anti-Toxoplasma action of the bio-modified nanoparticles, we added Trolox antioxidant to the assay medium and found that Trolox appreciably reduced the nanoparticle-induced growth inhibition.

2.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36986545

ABSTRACT

Currently, toxoplasmosis affects nearly one-third of the world's population, but the available treatments have several limitations. This factor underscores the search for better therapy for toxoplasmosis. Therefore, in the current investigation, we investigated the potential of emodin as a new anti-Toxoplasma gondii while exploring its anti-parasitic mechanism of action. We explored the mechanisms of action of emodin in the presence and absence of an in vitro model of experimental toxoplasmosis. Emodin showed strong anti-T. gondii action with an EC50 value of 0.03 µg/mL; at this same effective anti-parasite concentration, emodin showed no appreciable host cytotoxicity. Likewise, emodin showed a promising anti-T. gondii specificity with a selectivity index (SI) of 276. Pyrimethamine, a standard drug for toxoplasmosis, had an SI of 2.3. The results collectively imply that parasite damage was selective rather than as a result of a broad cytotoxic effect. Furthermore, our data confirm that emodin-induced parasite growth suppression stems from parasite targets and not host targets, and indicate that the anti-parasite action of emodin precludes oxidative stress and ROS production. Emodin likely mediates parasite growth suppression through means other than oxidative stress, ROS production, or mitochondrial toxicity. Collectively, our findings support the potential of emodin as a promising and novel anti-parasitic agent that warrants further investigation.

3.
Biomed Pharmacother ; 162: 114597, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36989712

ABSTRACT

Toxoplasma gondii, the etiological agent of toxoplasmosis, currently affects nearly one-third of the human population. Treatment options for toxoplasmosis are limited, which underscores the need for new drugs. In the present study, we screened nanoparticles (NPs) of titanium dioxide (TiO2) and molybdenum (Mo) for their potential to inhibit the growth of T. gondii in vitro. NPs of TiO2 and Mo showed non-dose-dependent anti-T. gondii activity with EC50 values of 157.6 and 253 µg/mL, respectively. Previously, we showed that amino acid modification of NPs enhances their selective anti-parasite toxicity. Therefore, to enhance the selective anti-parasitic action of TiO2, we modified the NP surface using alanine, aspartate, arginine, cysteine, glutamate, tryptophan, tyrosine, and bovine serum albumin. The bio-modified TiO2 showed anti-parasite activity with EC50 values ranging from 45.7 to 286.4 µg/mL. At effective anti-parasite concentrations, modified-TiO2 showed no appreciable host cytotoxicity. Of the eight bio-modified TiO2, tryptophan-TiO2 showed the most promising anti-T. gondii specificity and improved host biocompatibility with a selectivity index (SI) of 49.1 versus 7.5 for TiO2 (note, pyrimethamine, a standard drug for toxoplasmosis, has an SI of 2.3). Furthermore, our data indicate that redox modulation may be part of the anti-parasite action of these NPs. Indeed, augmentation with trolox and l-tryptophan reversed the growth restriction caused by the tryptophan-TiO2 NPs. Collectively, these findings suggest that the parasite toxicity was selective and not a result of general cytotoxic action. Furthermore, surface modification with amino acids such as l-tryptophan not only enhanced the anti-parasitic action of TiO2 but also improved the host biocompatibility. Overall, our findings indicate that the nutritional requirements of T. gondii represent a viable target for the development of new and effective anti-T. gondii agents.


Subject(s)
Nanoparticles , Parasites , Toxoplasma , Toxoplasmosis , Animals , Humans , Tryptophan/pharmacology , Toxoplasmosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...