Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genet ; 15: 46, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24739137

ABSTRACT

BACKGROUND: Several lines of evidence associate misregulated genetic expression with risk factors for diabetes, Alzheimer's, and other diseases that sporadically develop in healthy adults with no background of hereditary disorders. Thus, we are interested in genes that may be expressed normally through parts of an individual's life, but can cause physiological defects and disease when misexpressed in adulthood. RESULTS: We attempted to identify these genes in a model organism by arbitrarily misexpressing specific genes in adult Drosophila melanogaster, using 14,133 Gene Search lines. We identified 39 "reduced-lifespan genes" that, when misexpressed in adulthood, shortened the flies' lifespan to less than 30% of that of control flies. About half of these genes have human orthologs that are known to be involved in human diseases. For about one-fourth of the reduced-lifespan genes, suppressing apoptosis restored the lifespan shortened by their misexpression. We determined the organs responsible for reduced lifespan when these genes were misexpressed specifically in adulthood, and found that while some genes induced reduced lifespan only when misexpressed in specific adult organs, others could induce reduced lifespan when misexpressed in various organs. This finding suggests that tissue-specific dysfunction may be involved in reduced lifespan related to gene misexpression. Gene ontology analysis showed that reduced-lifespan genes are biased toward genes related to development. CONCLUSIONS: We identified 39 genes that, when misexpressed in adulthood, shortened the lifespan of adult flies. Suppressing apoptosis rescued this shortened lifespan for only a subset of the reduced-lifespan genes. The adult tissues in which gene misexpression caused early death differed among the reduced-lifespan genes. These results suggest that the cause of reduced lifespan upon misexpression differed among the genes.


Subject(s)
Drosophila melanogaster/growth & development , Genes, Insect , Genes, Lethal , Longevity/genetics , Animals , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Male
2.
Article in English | MEDLINE | ID: mdl-21584236

ABSTRACT

Cattle bile (CB) has long been used in Japan as an ingredient of digestive medicines. Bile acids are major chemical constituents of CB, and CB ingestion is assumed to affect small intestinal injury induced by nonsteroidal anti-inflammatory drugs (NSAIDs). Mice were fed a diet supplemented with or without CB for 7 days and treated with diclofenac sodium (DIF) to induce small intestinal injury. Lesion formation was enhanced, and PGE2 content and COX expression levels were elevated in the small intestine of DIF-treated mice fed the CB diet compared with those fed the control diet. The administration of a reconstituted mixture of bile acids found in CB enhanced lesion formation in DIF-treated mice. CB administration elevated the contents of CB-derived bile acids in the small intestine, some of which exhibited a high cytotoxicity to cultured intestinal epithelial cells. These results suggest that the elevated levels of CB-derived cytotoxic bile acids in the small intestine contribute to the aggravation of DIF-induced small intestinal injury. The use of CB may be limited during the therapy of inflammatory diseases with NSAIDs.

3.
J Toxicol Sci ; 33(3): 339-47, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18670165

ABSTRACT

Large-scale clinical studies have shown that the biguanide drug metformin, widely used for type 2 diabetes, to be very safe. By contrast, another biguanide, phenformin, has been withdrawn from major markets because of a high incidence of serious adverse effects. The difference in mode of action between the two biguanides remains unclear. To gain insight into the different modes of action of the two drugs, we performed global gene expression profiling using the livers of obese diabetic db/db mice after a single administration of phenformin or metformin at levels sufficient to cause a significant reduction in blood glucose level. Metformin induced modest expression changes, including G6pc in the liver as previously reported. By contrast, phenformin caused changes in expression level of many additional genes. We used a knowledge-based bioinformatic analysis to study the effects of phenformin. Differentially expressed genes identified in this study constitute a large gene network, which may be related to cell death, inflammation or wound response. Our results suggest that the two biguanides show a similar hypoglycemic effect in db/db mice, but phenformin induces a greater stress on the liver even a short time after a single administration. These findings provide a novel insight into the cause of the relatively high occurrence of serious adverse effect after phenformin treatment.


Subject(s)
Gene Expression Profiling , Hypoglycemic Agents/pharmacology , Liver/drug effects , Metformin/pharmacology , Phenformin/pharmacology , Animals , Blood Glucose/analysis , Computational Biology , Dose-Response Relationship, Drug , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Oligonucleotide Array Sequence Analysis , Phenformin/toxicity
4.
Article in English | MEDLINE | ID: mdl-17544320

ABSTRACT

The amino-imino tautomerization of the 4-aminopyrimidine (4APM)/acetic acid (AcOH) system through dual hydrogen bonding in n-hexane at room temperature was investigated using UV absorption and fluorescence spectroscopies, fluorescence time-profile measurements, and molecular orbital calculations, with those of the imino-model compound of 3-methyl-4(1H)-pyrimidinimine (3M4PMI). From the experimental results, it was confirmed that the imino-tautomer was formed in the first excited singlet state (S1) state through the double-proton transfer of the dual hydrogen-bonded complex of 4APM with AcOH. The fluorescences of the free 4APM monomer (band maximum at 353nm), imino-tautomer (at 414nm), and 3M4PMI monomer (at 437nm) exhibit the single-exponential decays of 98, 73, and 19ps time constants, respectively. The shorter decay time of the imino-tautomer fluorescence compared with the free monomer one is suggestive of the low activation energy process in the S1 state. From the result of the shortest decay time of the 3M4PMI fluorescence, it can be deduced that 3M4PMI has a non-planar structure in the S1 state. The theoretical calculations on the S0 and S1 state double-proton transfer for the 4APM/AcOH dual hydrogen-bonded system were performed with the use of formic acid (FoOH) in place of AcOH for the sake of simplicity. Only one peak of transition state was resolved in the S0 and S1 states. The energy barrier for the S1 state double-proton transfer of the 4APM/FoOH complex-->3H-4(1H)-pyrimidinimine/FoOH tautomer was estimated to be approximately 2kJmol(-1) using the CIS/6-31G(d) methods. On the other hand, the energy barrier for the S0 state reverse proton transfer of the 3H-4(1H)-pyrimidinimine/FoOH tautomer-->4APM/FoOH complex was estimated to be almost zero kJmol(-1) at B3LYP/6-31G(d) level.


Subject(s)
Acetates/chemistry , Amines/chemistry , Imines/chemistry , Pyrimidines/chemistry , Molecular Structure , Spectrophotometry , Stereoisomerism , Surface Properties , Thermodynamics , Time Factors
5.
Article in English | MEDLINE | ID: mdl-17336582

ABSTRACT

The hydrogen bonding and amino-imino tautomerization of the systems of 2-amino-3-methoxypyridine (2A3MOP), 2-amino-6-methoxypyridine (2A6MOP), 2-amino-6-n-propoxypyridine (2A6NPOP), 2-amino-6-iso-propoxypyridine(2A6IPOP), 2-amino-4-methoxypyrimidine (2A4MOPM), 4-amino-2-methoxypyrimidine (4A2OPM), 4-amino-6-methoxypyrimidine (4A6MOPM), 2-amino-4-methoxy-6-methylpyrimidine (MMPM), and 2-amino-4,6-dimethoxypyrimidine (DMOPM), with acetic acid (AcOH) in n-hexane at room temperature were investigated by means of the UV absorption and fluorescence spectroscopy. From the UV absorption spectra the presence of the dual hydrogen-bonded complexes that linked by a 1:1 molar ratio with AcOH were found, since the enthalpy changes accompanying the hydrogen bond formation between 2A3MOP, 2A4MOPM, 4A2MOPM, 4A6MOPM, or MMPM, and AcOH were ca. 42.8-61.1kJmol(-1) in n-hexane. The fluorescence spectra of the 2A3MOP/AcOH, 2A4MOPM/AcOH, 4A6MOPM/AcOH, and MMPM/ AcOH systems revealed that the imino-tautomers were produced through double proton transfer in the amino hydrogen-bonded 1:1 complexes in the S1 state, but the imino-tautomer formation for the 4A2MOPM/AcOH system was not found on account of the steric hindrance due to the inversion of the methoxy group in the S1 state. The imino-tautomer for the MMPM/AcOH system fluoresces most intensely among these systems investigated. On the other hand, not only the formation of the corresponding amino dual hydrogen-bonded complex and but also that of imino-tautomer were prevented for the 2A6MOP/AcOH, 2A6NPOPM/AcOH, 2A6IPOP/AcOH, and DMOPM/AcOH systems, because of the steric hindrance of the methoxy group in both the S0 and S1 states. The theoretical approaches by an ab initio molecular orbital calculation were in accord with the experimental results.


Subject(s)
Acetic Acid/chemistry , Alcohols/chemistry , Amines/chemistry , Aminopyridines/chemistry , Imines/chemistry , Pyrimidines/chemistry , Hydrogen Bonding , Isomerism , Molecular Conformation , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics
6.
Methods Mol Biol ; 357: 33-43, 2007.
Article in English | MEDLINE | ID: mdl-17172676

ABSTRACT

Ischemia-reperfusion injury occurs in acute myocardial infarction, cardiopulmonary bypass surgery, and heart transplantation. However the precise mechanisms still remain unclear. In order to identify proteins that are involved in ischemia-reperfusion injury, we compared precipitated 100,000g fractions of normal, ischemic, and ischemic-reperfused rat hearts using two-dimensional (2D) difference gel electrophoresis (2D-DIGE). 2D-DIGE is reliable method to define quantitative protein differences, especially when subtle protein changes are under investigation. In this study, six spots that changed more than twofold and two additional spots related to these spots were detected. Five of the spots were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry as protein disulfide isomerase, one as 60 kDa heat-shock protein, and two as elongation factor Tu.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Myocardium/metabolism , Proteome/analysis , Reperfusion Injury/metabolism , Animals , Chaperonin 60/analysis , Electrophoresis, Gel, Two-Dimensional/instrumentation , Myocardial Infarction/metabolism , Myocardial Ischemia/metabolism , Myocardium/pathology , Peptide Elongation Factor Tu/analysis , Protein Disulfide-Isomerases/analysis , Rats , Reproducibility of Results
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 62(4-5): 1157-64, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15978861

ABSTRACT

The electronic absorption and fluorescence spectra of 2-aminopyrimidine (2APM), 2-amino-4-methylpyrimidine (2A4MPM), and 2-amino-4,6-dimethylpyrimidine (2ADMPM) with acetic acid (AcOH) were measured in isooctane (2,2,4-trimethylpentane) at room temperature. From the absorption spectra, a hydrogen-bonded complex formation of the 2APM/AcOH, 2A4MPM/AcOH, and 2ADMPM/AcOH systems was recognized in isooctane. The enthalpy changes (-DeltaH) for the complex formation were estimated to be ca. 41.2-45.1 kJ mol-1 and increased in proportion to the numbers of the methyl group introduced into the 2APM. The -DeltaH values refer to the formation of the hydrogen-bonded 1:1 complex between the ring nitrogen atom and NH2 group of the aminopyrimidine and the OH and CO groups of AcOH, respectively. In the 2A4MPM/AcOH double hydrogen-bonded complex the OH group of AcOH is thought to be linked to the ring nitrogen at the 1-postion of 2A4MPM. The fluorescence spectral results indicate that the double proton transfer reaction takes place during the excited state, and gives rise to an imino-tautomer vibration emission, from analogy with the fluorescences of 1-methyl-2(1H)-pyrimidinimine (MPMI), 1,4-dimethyl-2(1H)-pyrimidinimine (DMPMI), and 1,4,6-trimethyl-2(1H)-pyrimidinimine (TMPMI). The fluorescence quantum yields of the imino-tautomers also increased in proportion to the numbers of the methyl group introduced into the 2APM.


Subject(s)
Acetates/chemistry , Pyrimidines/chemistry , Pyrimidines/radiation effects , Isomerism , Methylation , Molecular Structure , Photochemistry , Quantum Theory , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
8.
Proteomics ; 3(7): 1318-24, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12872233

ABSTRACT

Ischemia-reperfusion injury is a major complication occurring in acute myocardial infarction, cardiopulmonary bypass surgery, and heart transplantation. The aim of this study was to identify proteins that were involved in ischemia-reperfusion injury using fluorescence two-dimensional difference gel electrophoresis. We compared the 100,000 x g precipitate fractions of normal, ischemic and ischemia-reperfused rat hearts and detected six spots which changed more than two-fold in expression level and two additional spots related to these spots. Using peptide mass fingerprinting by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, we identified five of these spots as protein disulfide isomerase A3 (PDA3), one as 60 kDa heat shock protein (HSP60) and two as elongation factor Tu (EF-Tu). HSP60 was increased during ischemia and decreased to normal expression level after reperfusion. EF-Tu was increased in ischemia but not decreased by reperfusion. We also found that several protein spots of PDA3 shifted towards a higher isoelectric point in ischemia and ischemia-reperfusion. Our data strongly suggested that PDA3 underwent dephosphorylation during ischemia and reperfusion and serine 343 of PDA3 was one of the phosphorylation sites.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Ischemia , Microscopy, Fluorescence/methods , Myocardium/metabolism , Proteome , Reperfusion Injury/pathology , Animals , Binding Sites , Carbocyanines/chemistry , Chaperonin 60/metabolism , Databases as Topic , Fluorescent Dyes/pharmacology , Image Processing, Computer-Assisted , Male , Peptide Elongation Factor Tu/metabolism , Phosphorylation , Protein Disulfide-Isomerases/chemistry , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Subcellular Fractions
SELECTION OF CITATIONS
SEARCH DETAIL
...