Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 5(5): 2377-2388, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35506864

ABSTRACT

Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-ß-cyclodextrin (Lac-HPßCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPßCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPßCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPßCD has potential for the treatment of NPC.


Subject(s)
Niemann-Pick Disease, Type C , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Animals , Cholesterol/metabolism , Endosomes/metabolism , Lactose/metabolism , Mice , Niemann-Pick Disease, Type C/drug therapy
2.
J Control Release ; 328: 722-735, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33002523

ABSTRACT

The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended ß-cyclodextrins (ß-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended ß-CyD (Lac-ß-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended ß-CyDs did. In addition, the permeability of Lac-ß-CyD within the in vitro human BBB model was greater than that of other sugar-appended ß-CyDs. Moreover, Lac-ß-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-ß-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-ß-CyD has the potential to be a novel carrier for drugs across the BBB.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Brain , Endothelial Cells , Lactose
SELECTION OF CITATIONS
SEARCH DETAIL
...