Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(10): 4533-4540, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37155295

ABSTRACT

Janus transition metal dichalcogenides (TMDCs), with dissimilar chalcogen atoms on each side of TMDCs, have garnered considerable research attention because of the out-of-plane intrinsic polarization in monolayer TMDCs. Although a plasma process has been proposed for synthesizing Janus TMDCs based on the atomic substitution of surface atoms at room temperature, the formation dynamics and intermediate electronic states have not been completely examined. In this study, we investigated the intermediate state between MoSe2 and Janus MoSeS during plasma processing. Atomic composition analysis and atomic-scale structural observations revealed the intermediate partially substituted Janus (PSJ) structure. Combined with theoretical calculations, we successfully clarified the characteristic Raman modes in the intermediate PSJ structure. The PL exhibited discontinuous transitions that could not be explained by the theoretical calculations. These findings will contribute toward understanding the formation process and electronic-state modulation of Janus TMDCs.

2.
ACS Nano ; 16(7): 11360-11373, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35793540

ABSTRACT

Transition metal dichalcogenides (TMDCs), including MoS2 and WS2, are potential candidates for next-generation semiconducting materials owing to their atomically thin structure and strong optoelectrical responses, which allow for flexible optoelectronic applications. Monolayer TMDCs have been grown utilizing chemical vapor deposition (CVD) techniques. Enhancing the domain size with high crystallinity and forming heterostructures are important topics for practical applications. In this study, the size of monolayer WS2 increased via the vapor-liquid-solid growth-based CVD technique utilizing the confined space of the substrate-stacked microreactor. The use of spin-coated metal salts (Na2WO4 and Na2MoO4) and organosulfur vapor allowed us to precisely control the source supply and investigate the growth in a systematic manner. We obtained a relatively low activation energy for growth (1.02 eV), which is consistent with the surface diffusion-limited growth regime observed in the confined space. Through systematic photoluminescence (PL) analysis, we determined that a growth temperature of ∼820 °C is optimal for producing high-quality WS2 with a narrow PL peak width (∼35 meV). By controlling the source balance of W and S, we obtained large-sized fully monolayered WS2 (∼560 µm) and monolayer WS2 with bilayer spots (∼1100 µm). Combining two distinct sources of transition metals, WS2/MoS2 lateral heterostructures were successfully created. In electrical transport measurements, the monolayer WS2 grown under optimal conditions has a high on-current (∼70 µA/µm), on/off ratio (∼5 × 108), and a field-effect mobility of ∼7 cm2/(V s). The field-effect transistor displayed an intrinsic photoresponse with wavelength selectivity that originated from the photoexcited carriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...