Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(27): 275701, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28541250

ABSTRACT

The in situ observation of Au dot formation and the self-assembly dynamics of Au nanoparticles (NPs) was successfully demonstrated via dewetting of Au thin films on SiO2 glass substrates under nano-second pulsed laser irradiation using a multi-quantum beam high-voltage electron microscope. Moreover, using electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM), the plasmonic properties of the formed Au/SiO2 nanostructure were analyzed to demonstrate its validity in advanced optical devices. The uniformly distributed Au NPs evolved into a dot alignment through movement and coalescence processes was demonstrated in this in situ observation. We carried out the plasmon-loss images of the plan view and the cross-section of the Au/SiO2 nanostructures were obtained at the plasmon-loss peak energy for investigate the three-dimensional distribution of surface plasmon. Furthermore, discrete-dipole approximation (DDA) calculations were used to simulate the plasmonic properties, such as the surface plasmon resonance and the surface plasmon field distribution, of isolated single Au/SiO2 nanostructures. This STEM-EELS-acquired surface plasmon map of the cross-sectional sample is in excellent agreement with the DDA calculations. This results demonstrated the influence of the contact condition between Au NP and SiO2 glass on the plasmonic properties, and may improve the technology for developing advanced optical devices.

2.
Nano Lett ; 17(3): 2088-2093, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28157326

ABSTRACT

When applied in optoelectronic devices, a ZnO semiconductor dominantly absorbs or emits ultraviolet light because of its direct electron transition through a wide energy bandgap. On the contrary, crystal defects and nanostructure morphology are the chief key factors for indirect, interband transitions of ZnO optoelectronic devices in the visible light range. By ultraviolet illumination in ultrapure water, we demonstrate here a conceptually unique approach to tune the shape of ZnO nanorods from tapered to capped-end via apical surface morphology control. We show that oxygen vacancy point defects activated by excitonic effects near the tip-edge of a nanorod serve as an optoelectrical hotspot for the light-driven formation and tunability of the optoelectrical properties. A double increase of electron energy absorption on near band edge energy of ZnO was observed near the tip-edge of the tapered nanorod. The optoelectrical hotspot explanation rivals that of conventional electrostatics, impurity control, and alkaline pH control-associated mechanisms. Thus, it highlights a new perspective to understanding light-driven nanorod formation in pure neutral water.

3.
Photochem Photobiol Sci ; 15(1): 99-104, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26692283

ABSTRACT

Luminescent silicon nanoparticles have attracted considerable attention for their potential uses in various applications. Many approaches have been reported to protect the surface of silicon nanoparticles and prevent their easy oxidation. Various air-stable luminescent silicon nanoparticles have been successfully prepared. However, the effect of interactions of the π-electron system with the silicon surface on the excited state properties of silicon nanoparticles is unclear. In this study, we have successfully prepared silicon nanoparticles protected with three organic compounds (styrene, 1-decene, and 1-vinyl naphthalene) and have examined their photophysical properties. The ligand π-electron systems on the silicon surface promoted the light harvesting ability for the luminescence through a charge transfer transition between the protective molecules and silicon nanoparticles and also enhanced the radiative rate of the silicon nanoparticles.


Subject(s)
Alkenes/chemistry , Luminescence , Nanoparticles/chemistry , Naphthalenes/chemistry , Silicon/chemistry , Styrene/chemistry , Ligands , Particle Size , Photochemical Processes , Quantum Theory , Silanes/chemistry , Surface Properties
4.
Sci Rep ; 5: 11429, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26076674

ABSTRACT

We report a new production pathway for a variety of metal oxide nanocrystallites via submerged illumination in water: submerged photosynthesis of crystallites (SPSC). Similar to the growth of green plants by photosynthesis, nanocrystallites shaped as nanoflowers and nanorods are hereby shown to grow at the protruded surfaces via illumination in pure, neutral water. The process is photocatalytic, accompanied with hydroxyl radical generation via water splitting; hydrogen gas is generated in some cases, which indicates potential for application in green technologies. Together with the aid of ab initio calculation, it turns out that the nanobumped surface, as well as aqueous ambience and illumination are essential for the SPSC method. Therefore, SPSC is a surfactant-free, low-temperature technique for metal oxide nanocrystallites fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...