Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(9): 2805-2811, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408433

ABSTRACT

High-speed atomic force microscopy (HS-AFM) is an indispensable technique in the field of biology owing to its imaging capability with high spatiotemporal resolution. Furthermore, recent developments established tip-scan stand-alone HS-AFM combined with an optical microscope, drastically improving its versatility. It has considerable potential to contribute to not only biology but also various research fields. A great candidate is a photoactive material, such as an azo-polymer, which is important for optical applications because of its unique nanoscale motion under light irradiation. Here, we demonstrate the in situ observation of nanoscale azo-polymer motion by combining tip-scan HS-AFM with an optical system, allowing HS-AFM observations precisely aligned with a focused laser position. We observed the dynamic evolution of unique morphologies in azo-polymer films. Moreover, real-time topographic line profile analyses facilitated precise investigations of the morphological changes. This important demonstration would pave the way for the application of HS-AFM in a wide range of research fields.

2.
ACS Omega ; 7(11): 9701-9709, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35350315

ABSTRACT

The transmission of neuronal information is propagated through synapses by neurotransmitters released from presynapses to postsynapses. Neurotransmitters released from the presynaptic vesicles activate receptors on the postsynaptic membrane. Glutamate acts as a major excitatory neurotransmitter for synaptic vesicles in the central nervous system. Determining the concentration of glutamate in single synaptic vesicles is essential for understanding the mechanisms of neuronal activation by glutamate in normal brain functions as well as in neurological diseases. However, it is difficult to detect and quantitatively measure the concentration of glutamate in single synaptic vesicles owing to their small size, i.e., ∼40 nm. In this study, to quantitatively evaluate the concentrations of the contents in small membrane-bound vesicles, we developed an optical trapping Raman spectroscopic system that analyzes the Raman spectra of small objects captured using optical trapping. Using artificial liposomes encapsulating glutamate that mimic synaptic vesicles, we investigated whether spontaneous Raman scattered light of glutamate can be detected from vesicles trapped at the focus using optical forces. A 575 nm laser beam was used to simultaneously perform the optical trapping of liposomes and the detection of the spontaneous Raman scattered light. The intensity of Raman scattered light that corresponds to lipid bilayers increased with time. This observation suggested that the number of liposomes increased at the focal point. The number of glutamate molecules in the trapped liposomes was estimated from the calibration curve of the Raman spectra of glutamate solutions with known concentration. This method can be used to measure the number of glutamate molecules encapsulated in synaptic vesicles in situ.

3.
Micromachines (Basel) ; 11(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878218

ABSTRACT

The excitatory synaptic transmission is mediated by glutamate in neuronal networks of the mammalian brain. In addition to the synaptic glutamate, extra-synaptic glutamate is known to modulate the neuronal activity. In neuronal networks, glutamate uptake is an important role of neurons and glial cells for lowering the concentration of extracellular glutamate and to avoid the excitotoxicity by glutamate. Monitoring the spatial distribution of intracellular glutamate is important to study the uptake of glutamate, but the approach has been hampered by the absence of appropriate glutamate analogs that report the localization of glutamate. Deuterium-labeled glutamate (GLU-D) is a promising tracer for monitoring the intracellular concentration of glutamate, but physiological properties of GLU-D have not been studied. Here we study the effects of extracellular GLU-D for the neuronal activity by using primary cultured rat hippocampal neurons that form neuronal networks on microelectrodes array. The frequency of firing in the spontaneous activity of neurons increased with the increasing concentration of extracellular GLU-D. The frequency of synchronized burst activity in neurons increased similarly as we observed in the spontaneous activity. These changes of the neuronal activity with extracellular GLU-D were suppressed by antagonists of glutamate receptors. These results suggest that GLU-D can be used as an analog of glutamate with equivalent effects for facilitating the neuronal activity. We anticipate GLU-D developing as a promising analog of glutamate for studying the dynamics of glutamate during neuronal activity.

4.
Opt Express ; 24(18): 20080-8, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607617

ABSTRACT

We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors.

5.
Chemphyschem ; 15(4): 642-6, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24520071

ABSTRACT

Differently colored fluorescent Pt nanoclusters (NCs) are easily prepared using polyethyleneimine as the stabilizing ligand and environmentally friendly L-ascorbic acid as the reducing agent. The quantum yields of the blue- (1:5), green- (1:20), and yellow-emitting (1:25) NCs are 4 %, 11 %, and 7 %, respectively. The fluorescent Pt NCs show excellent photostability and are sensitive to Co(2+) ions (with a detection limit of 500 nM).


Subject(s)
Cobalt/analysis , Metal Nanoparticles/chemistry , Platinum/chemistry , Fluorescence , Luminescent Measurements
6.
ACS Nano ; 7(12): 10733-40, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24195575

ABSTRACT

The plasmon resonant wavelength for a pair of gold nanoparticles, or gold nanodimer, increases inversely with the gap distance between the two nanoparticles. Taking advantage of this property, we performed nanoscale measurements of DNA conformation changes induced by transcription factor binding. Gold nanoparticles were bridged by double-stranded DC5 DNA that included binding sequences for the transcription factors SOX2 and PAX6, which interact on the DC5 enhancer sequence and activate transcription. The gold nanodimers bound by SOX2 shifted the plasmon resonant wavelength from 586.8 to 604.1 nm, indicating that SOX2 binding induces DNA bending. When the SOX2 formed a ternary complex with PAX6 on DC5, the plasmon resonant wavelength showed a further shift to 611.6 nm, indicating additional bending in the DC5 sequence. Furthermore, we investigated DNA conformation changes induced by SOX2 and PAX6 on the DC5-con sequence, which is a consensus sequence of DC5 for the PAX6 binding region that strengthens the PAX6 binding but at the same time disrupts SOX2-PAX6-dependent transcriptional activation. When the PAX6 binding sequence in DC5 was altered to DC5-con, the plasmon resonant wavelength shifted much less to 606.5 nm, which is more comparable to the 603.9 nm by SOX2 alone. These results demonstrate that SOX2-PAX6 cobinding induces a large conformation change in DC5 DNA.


Subject(s)
DNA/chemistry , Nanoparticles/chemistry , Transcription Factors/chemistry , Animals , Dimerization , Eye Proteins/chemistry , Gold/chemistry , Homeodomain Proteins/chemistry , Insecta , Metal Nanoparticles/chemistry , Nucleic Acid Conformation , PAX6 Transcription Factor , Paired Box Transcription Factors/chemistry , Protein Binding , Protein Conformation , Repressor Proteins/chemistry , SOXB1 Transcription Factors/chemistry , Static Electricity , Surface Plasmon Resonance
7.
Nano Lett ; 11(11): 4780-8, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21967475

ABSTRACT

The accurate manipulation of strain in silicon nanowires can unveil new fundamental properties and enable novel or enhanced functionalities. To exploit these potentialities, it is essential to overcome major challenges at the fabrication and characterization levels. With this perspective, we have investigated the strain behavior in nanowires fabricated by patterning and etching of 15 nm thick tensile strained silicon (100) membranes. To this end, we have developed a method to excite the "forbidden" transverse-optical (TO) phonons in single tensile strained silicon nanowires using high-resolution polarized Raman spectroscopy. Detecting this phonon is critical for precise analysis of strain in nanoscale systems. The intensity of the measured Raman spectra is analyzed based on three-dimensional field distribution of radial, azimuthal, and linear polarizations focused by a high numerical aperture lens. The effects of sample geometry on the sensitivity of TO measurement are addressed. A significantly higher sensitivity is demonstrated for nanowires as compared to thin layers. In-plane and out-of-plane strain profiles in single nanowires are obtained through the simultaneous probe of local TO and longitudinal-optical (LO) phonons. New insights into strained nanowires mechanical properties are inferred from the measured strain profiles.


Subject(s)
Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Spectrum Analysis, Raman/methods , Titanium/chemistry , Elastic Modulus , Molecular Conformation
8.
J Phys Chem B ; 114(8): 2565-71, 2010 Mar 04.
Article in English | MEDLINE | ID: mdl-20146536

ABSTRACT

Three-dimensional molecular orientations of single fluorescence molecules in polymeric thin films were measured by focused azimuthally and radially polarized light, in which we found that the fluorescence intensity was dependent on the depth position of the molecule with respect to the film surface. We found that the fluorescence intensity for a molecule which is 80 nm deep in the film excited by radial polarization is appreciably larger when compared with the fluorescence intensity for a molecule which is also excited by radial polarization but which is closer to the polymer/air interface, a feature which leads to different fluorescence intensities, under excitation by radial polarization, for molecules with the same polar orientation but with different depths inside the film. We also found that the variation of fluorescence intensity from a molecule inside an 80 nm film in radial polarization is appreciably larger compared with one in azimuthal polarization. These findings were confirmed by comparing experiments using different thickness films with theoretically calculated electric field distributions.


Subject(s)
Carbocyanines/chemistry , Membranes, Artificial , Optics and Photonics , Carbocyanines/chemical synthesis , Fluorescence , Free Radicals/chemical synthesis , Free Radicals/chemistry , Surface Properties
9.
Opt Express ; 17(8): 6509-18, 2009 Apr 13.
Article in English | MEDLINE | ID: mdl-19365475

ABSTRACT

We present a novel technique to tune the plasmon resonance of metal-coated silicon tips in the whole visible region without altering the tips original sharpness. The technique involves modification of the refractive index of silicon probe by thermal oxidization. Lowering the refractive index of silicon tip coated with metal shift the PRW of the metallic layer to shorter wavelength. Numerical simulation using FDTD agrees well with the empirical results. This novel technique is very useful in tip-enhanced Raman spectroscopy studies of various materials because plasmon resonance can tuned to a specific Raman excitation wavelength.


Subject(s)
Metals/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Refractometry/methods , Reproducibility of Results , Sensitivity and Specificity , Surface Plasmon Resonance/methods
10.
Opt Express ; 16(18): 14106-14, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18773020

ABSTRACT

We present the first report of two-photon induced plastic surface deformation in solid polymer films. Exposure of azo polymer films, which absorb in the visible range (lambda(max) = 480 nm), to intense 920 nm irradiation leads to polarization dependent photofluidic polymer nanomovement caused by photoselective two-photon trans <-->cis isomerization. The deformations were induced by a gradient of light intensity; and strongly depend on the wavelength and the polarization direction of the incident laser light and the position of the focused spot with respect to the plane of the polymer film.


Subject(s)
Nanotechnology/methods , Optical Tweezers , Polymers/chemistry , Polymers/radiation effects , Motion , Photons , Radiation Dosage
11.
J Chem Phys ; 125(16): 164718, 2006 Oct 28.
Article in English | MEDLINE | ID: mdl-17092131

ABSTRACT

We report on light induced orientation by two-photon isomerization of azobenzenes in films of polymer. The dynamics of isomerization and orientation by one-photon absorption and two-photon absorption (TPA) are similar, and TPA creates a degree of molecular orientation which is comparable to that achieved by single-photon isomerization, in agreement with the theoretical predictions of two-photon isomeric orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...