Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13680, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558744

ABSTRACT

Krüpple-like factors (Klfs) are highly conserved zinc-finger transcription factors that regulate various developmental processes, such as haematopoiesis and cardiovascular development. In zebrafish, transient knockdown analysis of biklf/klf17 using antisense morpholino suggests the involvement of biklf/klf17 in primitive erythropoiesis and hatching gland development; however, the continuous physiological importance of klf17 remains uncharacterized under the genetic ablation of the klf17 gene among vertebrates. We established the klf17-disrupted zebrafish lines using the CRISPR/Cas9 technology and performed phenotypic analysis throughout early embryogenesis. We found that the klf17-deficient embryos exhibited abnormal lateral line neuromast deposition, whereas the production of primitive erythrocytes and haemoglobin production were observed in the klf17-deficient embryos. The expression of lateral line neuromast genes, klf17 and s100t, in the klf17-deficient embryos was detected in posterior lateral line neuromasts abnormally positioned at short intervals. Furthermore, the klf17-deficient embryos failed to hatch and died without hatching around 15 days post-fertilization (dpf), whereas the dechorionated klf17-deficient embryos and wild-type embryos were alive at 15 dpf. The klf17-deficient embryos abolished hatching gland cells and Ctsl1b protein expression, and eliminated the expression of polster and hatching gland marker genes, he1.1, ctsl1b and cd63. Thus, the klf17 gene plays important roles in posterior lateral line neuromast and hatching gland development.


Subject(s)
Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Lateral Line System/embryology , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , Animals, Genetically Modified , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hematopoiesis/genetics , Lateral Line System/metabolism , Zebrafish/metabolism
2.
Gene Expr Patterns ; 30: 32-36, 2018 12.
Article in English | MEDLINE | ID: mdl-30149151

ABSTRACT

Mammalian SLURP1 and SLURP2 belong to the Ly-6/uPAR superfamily and are involved in maintaining the physiological integrity of keratinocytes. However, the developmental expression and functions of other Ly-6/uPAR family genes in vertebrates are still obscure. We have isolated novel Ly-6/uPAR family genes slurp-like1 (ly2.3/ly97.3) and slurp-like2 (ly2.2/ly97.2) in zebrafish. Both the Slurp-like1 and Slurp-like2 proteins contain the typical signal sequence and carboxy-terminal CCXXXXCN (X: an arbitrary amino acid) consensus sequence of the Ly-6/uPAR family but lack a transmembrane domain and a GPI-anchoring signal sequence, suggesting that both proteins may function as secretory proteins. Whole-mount in situ hybridization analysis revealed that slurp-like1 was predominantly expressed in the floor plate of the neural tube and in the hypochord of the notochord at 24 h post-fertilization (hpf) and detected in the liver and intestinal bulb at 72 hpf, while slurp-like2 was expressed in the midbrain and hindbrain at 24 hpf and detected in the liver and pancreas at 72 hpf. Differential expression profiles of the slurp-like1 and slurp-like2 genes suggest the distinct physiological involvement of these genes in zebrafish early embryogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryonic Development , Keratinocytes/cytology , Keratinocytes/metabolism , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...