Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(4): 5208-5215, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33475346

ABSTRACT

In this work, we show that polarization rotation enhances the piezoresponse in a high-performance lead-free piezoelectric material, Na1/2Bi1/2V1-xTixO3, a solid solution between tetragonal Na1/2Bi1/2VO3 and rhombohedral Na1/2Bi1/2TiO3, obtained by high-pressure synthesis. The system forms a pure perovskite structure with a favorable morphotropic phase boundary (MPB) located around x = 0.90, which separates the tetragonal and rhombohedral phases. In addition, a distinct monoclinic phase with polarization rotation as functions of composition and temperature is observed. XRD measurements revealed the moderately high Curie temperature of 523 K at x = 0.95 in the MPB. The piezoelectric coefficient d33 of the monoclinic x = 0.95 sample, 42 pC/N, is higher than those of the tetragonal and rhombohedral phases. Even though the present lead-free Na1/2Bi1/2V1-xTixO3 ceramics feature smaller d33 values compared to many currently available lead-free piezoelectric materials as a result of insufficient poling and low density, we expect our findings open up opportunities for exploring promising lead-free piezoelectric materials in Na1/2Bi1/2VO3-based perovskites.

2.
J Am Chem Soc ; 142(12): 5731-5741, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32083872

ABSTRACT

Spin state transitions and intermetallic charge transfers can essentially change material structural and physical properties while excluding external chemical doping. However, these two effects have rarely been found to occur sequentially in a specific material. In this article, we show the realization of these two phenomena in a perovskite oxide PbCoO3 with a simple ABO3 composition under high pressure. PbCoO3 possesses a peculiar A- and B-site ordered charge distribution Pb2+Pb4+3Co2+2Co3+2O12 with insulating behavior at ambient conditions. The high spin Co2+ gradually changes to low spin with increasing pressure up to about 15 GPa, leading to an anomalous increase of resistance magnitude. Between 15 and 30 GPa, the intermetallic charge transfer occurs between Pb4+ and Co2+ cations. The accumulated charge-transfer effect triggers a metal-insulator transition as well as a first-order structural phase transition toward a Tetra.-I phase at the onset of ∼20 GPa near room temperature. On further compression over 30 GPa, the charge transfer completes, giving rise to another first-order structural transformation toward a Tetra.-II phase and the reentrant electrical insulating behavior.

3.
Inorg Chem ; 58(23): 16059-16064, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31714758

ABSTRACT

BiCoO3 is a PbTiO3 type of perovskite oxide with a giant tetragonal distortion (c/a = 1.27) that shows a pressure-induced transition from tetragonal to orthorhombic phases accompanied by a large volume shrinkage at 3 GPa. In this study, we carried out electron doping of BiCoO3 by substituting Ti4+ for Co3+ in order to destabilize the tetragonal phase and observe a giant negative thermal expansion (NTE) at ambient pressure. BiCo1-xTixO3 (x = 0, 0.1, 0.2, and 0.25) was successfully obtained by using high-pressure synthesis. However, the c/a ratio of the tetragonal phase was almost constant against x (≤0.2), and NTE was not observed at any x, suggesting that the tetragonal distortion coupled with high-spin Co3+ is robust against electron doping. In x = 0.25, a metastable orthorhombic phase was obtained by the high-pressure synthetic process, while it partially transformed into a tetragonal phase after annealing at 600 K. The stability of the giant tetragonal phase is strongly connected with the spin state of Co3+.

SELECTION OF CITATIONS
SEARCH DETAIL
...