Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 7254, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538729

ABSTRACT

We applied a perfect prognosis approach to downscale four meteorological variables that affect photovoltaic (PV) power output using four machine learning (ML) algorithms. In addition to commonly investigated variables, such as air temperature and precipitation, we also focused on wind speed and surface solar radiation, which are not frequently examined. The downscaling performance of the four variables followed the order of: temperature > surface solar radiation > wind speed > precipitation. Having assessed the dependence of the downscaling accuracy on the scaling factor, we focused on a super-resolution downscaling. We found that the convolutional neural network (CNN) generally outperformed the other linear and non-linear algorithms. The CNN was further able to reproduce extremes. With the rapid transition from coal to renewables, the need to evaluate low solar output conditions at a regional scale is expected to benefit from CNNs. Because weather affects PV power output in multiple ways, and future climate change will modify meteorological conditions, we focused on obtaining exemplary super-resolution application by evaluating future changes in PV power outputs using climate simulations. Our results confirmed the reliability of the CNN method for producing super-resolution climate scenarios and will enable energy planners to anticipate the effects of future weather variability.

3.
Sci Rep ; 13(1): 5992, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185982

ABSTRACT

Super-resolving the coarse outputs of global climate simulations, termed downscaling, is crucial in making political and social decisions on systems requiring long-term climate change projections. Existing fast super-resolution techniques, however, have yet to preserve the spatially correlated nature of climatological data, which is particularly important when we address systems with spatial expanse, such as the development of transportation infrastructure. Herein, we show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling with high magnification of up to 50 while maintaining pixel-wise statistical consistency. Direct comparison with the measured meteorological data of temperature and precipitation distributions reveals that integrating climatologically important physical information improves the downscaling performance, which prompts us to call this approach [Formula: see text]SRGAN (Physics Informed Super-Resolution Generative Adversarial Network). The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact. Additionally, we present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field, referred to as [Formula: see text]SRGAN (Precipitation Source Inaccessible SRGAN). Remarkably, this method demonstrates unexpectedly good downscaling performance for the precipitation field.

4.
Data Brief ; 42: 108047, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35341035

ABSTRACT

Assessing the impacts of climate change in multiple fields, such as energy, land and water resources, and human health and welfare is important to find effective strategies to adapt to a changing climate and to reduce greenhouse gases. Many phenomena influenced by climate change have diurnal fluctuations and are affected by simultaneous interactions among multiple meteorological factors. However, climate scenarios with detailed (at least hourly) resolutions are usually not available. To assess the impact of climate change on such phenomena while considering simultaneous interactions (e.g., synergies), climate scenarios with hourly fluctuations are indispensable. However, because meteorological indicators are not independent, the value of one indicator varies as a function of other indicators. Therefore, it is almost impossible to determine the functions that show all relationships among meteorological elements considering the geographical and temporal (both seasonal and time of a day) characteristics. Therefore, generating hourly scenarios that include possible combinations of meteorological indicators for each hourly observation unit is a challenging problem. In this study, we provide secondary future climate scenario datasets that have hourly fluctuations with reasonable combinations of meteorological indicator values that are likely to occur simultaneously, without losing the long-term climate change trend in the existing daily climate scenarios based on global climate models. Historical hourly weather datasets observed from 2017 to 2019 (the reference years) are used to retrieve short-term fluctuations. Bias-corrected daily future climate scenario datasets generated using four global climate models (GFDL CM3, HadGEM2-ES, MIROC5, and MRI-CGCM3) and two Representative Concentration Pathways (RCP8.5 and 2.6) are used to model long-term climate change. A total of 48 different types of hourly future scenario datasets for five meteorological indicators (temperature, solar radiation, humidity, rainfall, and wind speed) were acquired, targeting a projection period from 2020 to 2080, for 10 weather stations in Japan. The generated hourly climate scenario datasets can be used to project the quantitative impacts of climate change on targeted phenomena considering simultaneous interactions among multiple meteorological factors.

5.
Sci Rep ; 11(1): 15518, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330943

ABSTRACT

Permafrost is known to occur in high mountainous areas such as the Daisetsu Mountains in Japan, which are located at the southernmost limit of the permafrost distribution in the world. In this study, areas with climatic conditions suitable for sustaining permafrost in the Daisetsu Mountains are projected using bias-corrected and downscaled climate model outputs and statistical relationships between surface air temperatures and permafrost areas. Using freezing and thawing indices, the size of the area in the Daisetsu Mountains where climatic conditions were suitable for permafrost were estimated to be approximately 150 km2 in 2010. Under the RCP8.5 scenario, this area is projected to decrease to about 30 km2 by 2050 and it is projected to disappear by around 2070. Under the RCP2.6 scenario, the area is projected to decrease to approximately 20 km2 by 2100. The degradation of mountain permafrost could potentially affect the stability of trekking trails due to slope displacement, and it may also have deleterious effects on current alpine ecosystems. It is therefore important to accurately monitor changes in the mountain ecosystem environment and to implement measures to adapt to an environment that is projected to change significantly in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...