Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6284, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491033

ABSTRACT

Plants emit volatile compounds when they are subjected to herbivorous, pathogenic, or artificial damages. Both the damaged plant and the neighboring intact plants induce resistance when they receive these volatiles, a phenomenon known as plant-plant communication. However, field observations of this phenomenon are limited. To understand the nature of plant-plant communication, we collected information about intra- and inter-plant signaling via volatiles in Camellia japonica and C. rusticana under natural conditions. We exposed intact branches of damaged plant (intra-plant) or neighboring plant (inter-plant) to artificially damaged plant volatiles (ADPVs). Leaf damage reduced in ADPVs-exposed branches in the neighboring plants compared to branches that were exposed to volatiles from intact leaves, thus, indicating that inter-plant signaling occur by the emission of volatiles from damaged leaves. We also conducted an air-transfer experiment wherein the headspace air of the damaged branch was transferred to the headspace of intact branches. Leaf damage reduced on the ADPVs-transferred branch compared to the control branch. The effect of volatiles on damage reduction lasted for three months. Our results indicate that ADPVs in Camellia species contain cues that induce resistance in neighboring plants. Our findings improve understanding of plant defense strategies that may be used in horticulture and agriculture.


Subject(s)
Camellia , Volatile Organic Compounds , Signal Transduction , Plants , Herbivory , Communication
2.
Front Plant Sci ; 14: 1141338, 2023.
Article in English | MEDLINE | ID: mdl-37649992

ABSTRACT

Plants exposed to volatiles emitted from artificially damaged conspecific or heterospecific plants exhibit increased resistance to herbivorous insects. Here, we examined whether volatiles from artificially damaged weeds affect maize growth and reproduction. Seven days after germination, maize seedlings were exposed to volatiles emitted by artificially damaged mugwort (Artemisia indica var. maximowiczii) or tall goldenrod (Solidago altissima) plants either separately, or as a mixture of the two, for seven days. Unexposed seedlings were used as controls. Treated and control seedlings were cultivated in an experimental field without any insecticides applied. Plants exposed to either of the three volatile treatments sustained significantly less damage than controls. Additionally, seedlings exposed to either goldenrod or mixed volatiles produced more leaves and tillers than control plants. Furthermore, a significant increase in the number of ears was observed in plants exposed to the volatile mixture. In all treated plants, ear sugar content was significantly higher than that in the controls. Further, we cultivated seedlings that were either exposed to the volatile mixture or unexposed, under the conventional farming method using pesticides. Similar significant differences were observed for sugar content, number of tillers, leaves, damaged leaves, and ears. Laboratory experiments were conducted to further evaluate the mechanisms involved in the improved performance of volatile-treated plants. A significant reduction in the growth of common armyworm (Mythimna separata) larvae was observed when maize plants were exposed to the volatile mixture. This treatment did not affect the amount of jasmonic acid in the seedlings, whereas salicylic acid content increased upon exposure. The characteristic differences in chemical composition of mugwort and goldenrod volatiles were confirmed and, in turn, the volatile mixture differed significantly from the volatiles of either species.

4.
Ecol Evol ; 11(12): 7439-7447, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188825

ABSTRACT

The volatiles from damaged plants induce defense in neighboring plants. The phenomenon is called plant-plant communication, plant talk, or plant eavesdropping. Plant-plant communication has been reported to be stronger between kin plants than genetically far plants in sagebrush.Why do plants distinguish volatiles from kin or genetically far plants? We hypothesize that plants respond only to important conditions; the induced defense is not free of cost for the plant. To clarify the hypothesis, we conducted experiments and investigations using goldenrod of four different genotypes.The arthropod community on tall goldenrods were different among four genotypes. The response to volatiles was stronger from genetically close plants to the emitter than from genetically distant plants from the emitter. The volatiles from each genotype of goldenrods were different; and they were categorized accordingly. Moreover, the arthropod community on each genotype of goldenrods were different. Synthesis: Our results support the hypothesis: Goldenrods respond to volatiles from genetically close plants because they would have similar arthropod species. These results are important clues elucidating adaptive significance of plant-plant communication. ​.

5.
J Plant Res ; 129(4): 659-666, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27056097

ABSTRACT

Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.


Subject(s)
Artemisia/physiology , Herbivory/physiology , Seasons , Volatile Organic Compounds/analysis , Animals , Aphids/physiology , Biomass , Inflorescence/physiology
6.
Plant Signal Behav ; 10(12): e1095416, 2015.
Article in English | MEDLINE | ID: mdl-26418970

ABSTRACT

When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, ß-caryophyllene, α-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or ß-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and ß-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush.


Subject(s)
Artemisia/physiology , Signal Transduction , Herbivory/physiology , Plant Leaves/physiology , Volatile Organic Compounds/analysis
7.
New Phytol ; 204(2): 380-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24920243

ABSTRACT

Volatile communication between sagebrush (Artemisia tridentata) individuals has been found previously to reduce herbivory and to be more effective between individuals that are genetically identical or related relative to between strangers. The chemical nature of the cues involved in volatile communication remains unknown for this and other systems. We collected headspace volatiles from sagebrush plants in the field and analyzed these using GC-MS. Volatile profiles were highly variable among individuals, but most individuals could be characterized as belonging to one of two chemotypes, dominated by either thujone or camphor. Analyses of parents and offspring revealed that chemotypes were highly heritable. The ecological significance of chemotypes and the genetic mechanisms that control them remain poorly understood. However, we found that individuals of the same chemotype communicated more effectively and experienced less herbivory than individuals of differing chemotypes. Plants may use chemotypes to distinguish relatives from strangers.


Subject(s)
Artemisia/chemistry , Camphor/isolation & purification , Monoterpenes/isolation & purification , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Signal Transduction , Animals , Artemisia/physiology , Bicyclic Monoterpenes , Camphor/analysis , Gas Chromatography-Mass Spectrometry , Herbivory , Monoterpenes/analysis , Oils, Volatile/analysis , Plant Oils/analysis , Species Specificity
8.
Oecologia ; 172(3): 869-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23576105

ABSTRACT

The importance of interplant volatile signaling in plant-herbivore interactions has been a contentious issue for the past 30 years. We revisit willows as the system in which evidence for interplant signaling was originally found, but then questioned. We established three well-replicated experiments with two willow species (Salix exigua and Salix lemmonii) to address whether the receipt of an interplant signal from a neighboring willow reduces herbivore damage. Additionally we tested whether this signal is volatile in nature, and whether plants signal better to themselves than they do to other individuals. In all three experiments, we found evidence that cues from a damaged neighbor reduce subsequent herbivory experienced by willows. In one experiment, we showed that bagging of clipped tissue, which prevents the exchange of volatile signals, removed the effect of neighbor wounding. This was consistent with results from the other two experiments, in which clipping potted neighbors connected only through airborne volatile cues reduced damage of receivers. In one year, we found evidence that the perception of volatile signals from genetically identical clones was more effective at reducing foliar damage to a neighbor than signals from a genetically different individual. However, this trend was not significant in the following year. In three well-replicated experiments, we found strong evidence for the importance of interplant volatile cues in mediating herbivore interactions with willows.


Subject(s)
Salix/physiology , Signal Transduction , Species Specificity
9.
Proc Biol Sci ; 280(1756): 20123062, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23407838

ABSTRACT

The ability of many animals to recognize kin has allowed them to evolve diverse cooperative behaviours; such ability is less well studied for plants. Many plants, including Artemisia tridentata, have been found to respond to volatile cues emitted by experimentally wounded neighbours to increase levels of resistance to herbivory. We report that this communication was more effective among A. tridentata plants that were more closely related based on microsatellite markers. Plants in the field that received cues from experimentally clipped close relatives experienced less leaf herbivory over the growing season than those that received cues from clipped neighbours that were more distantly related. These results indicate that plants can respond differently to cues from kin, making it less likely that emitters will aid strangers and making it more likely that receivers will respond to cues from relatives. More effective defence adds to a growing list of favourable consequences of kin recognition for plants.


Subject(s)
Artemisia/physiology , Herbivory , Animals , Artemisia/genetics , Grasshoppers , Microsatellite Repeats , Volatile Organic Compounds
10.
Am Nat ; 176(3): 381-4, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20635861

ABSTRACT

Previous studies reported that sagebrush plants near experimentally clipped neighbors experienced less herbivory than did plants near unclipped neighbors. Blocking air flow with plastic bags made this effect undetectable. However, some scientists remained skeptical about the possibility of volatile communication between plants since the existence and identity of a cue that operates in nature have never been demonstrated. We conducted an air transfer experiment that collected air from the headspace of an experimentally clipped donor plant and delivered it to the headspace of an unclipped assay plant. We found that assay plants treated with air from clipped donors were less likely to be damaged by naturally occurring herbivores in a field experiment. This simple air transfer experiment fulfills the most critical of Koch's postulates and provides more definitive evidence for volatile communication between plants. It also provides an inexpensive experimental protocol that can be used to screen plants for interplant communication in the field.


Subject(s)
Artemisia/physiology , Plant Physiological Phenomena , Animals , Artemisia/chemistry , Artemisia/parasitology , Feeding Behavior , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...