Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genome Announc ; 6(23)2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29880592

ABSTRACT

We report here the complete genome sequence of Klebsiella quasipneumoniae strain S05, a bacterium capable of producing membrane fouling-causing soluble substances and capable of respiring on oxygen, nitrate, and an anodic electrode. The genomic information of strain S05 should help predict metabolic pathways associated with these unique biological properties of this bacterium.

2.
Front Microbiol ; 9: 3284, 2018.
Article in English | MEDLINE | ID: mdl-30692973

ABSTRACT

Integrated microbial fuel cell (MFC) and membrane bioreactor (MBR) systems are a promising cost-effective and energy-saving technology for wastewater treatment. Membrane fouling is still an important issue of such integrated systems in which aeration (oxygen) is replaced with anode electrodes (anodic respiration). Here, we investigated the effect of culture conditions on the membrane fouling potential of fouling-causing bacteria (FCB). In the present study, Klebsiella quasipneumoniae strain S05, which is an exoelectrogenic FCB isolated from a MBR treating municipal wastewater, was cultured with different external electron acceptors (oxygen, nitrate, and solid-state anode electrode). As results, the fouling potential of S05 was lowest when cultured with anode electrode and highest without any external electron acceptor (p < 0.05, respectively). The composition of soluble microbial products (SMP) and extracellular polymeric substances (EPS) was also dependent on the type of electron acceptor. Protein and biopolymer contents in SMP were highly correlated with the fouling potential (R 2 = 0.73 and 0.81, respectively). Both the fouling potential and yield of protein and biopolymer production were significantly mitigated by supplying electron acceptors sufficiently regardless of its types. Taken together, the aeration of MBR could be replaced with solid-state anode electrodes without enhancement of membrane fouling, and the anode electrodes must be placed sufficiently to prevent the dead spaces in the integrated reactor.

3.
Sci Rep ; 7(1): 8482, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814755

ABSTRACT

Membrane fouling still remains a major obstacle for wider applications of membrane bioreactor (MBR), which is mainly caused by soluble microbial products (SMP). Identification of key bacteria responsible for SMP production is essential for mitigation of membrane fouling. Here, we investigated the effect of microbial interaction on membrane fouling. We measured the membrane fouling potentials of 13 bacterial strains isolated from a pilot-scale MBR treating domestic wastewater when they were cultivated as single-culture and co-culture. We found that fouling-causing bacteria (FCB) displayed much higher fouling potential when co-cultured even with non-FCB and mixed population (activated sludge). In particular, the fouling potential of strain S26, one of FCB, increased 26.8 times when cultivated with strain S22 (fouling-enhancing bacteria, FEB). The secretion of N-octanoyl-L-homoserine lactone (C8-HSL) was increased by co-cultivating S22 and S26 as compared with cultivating as single culture, which stimulated the production of fouling-causing SMP by S26 and consequently resulted in severe membrane fouling. This result suggests that AHL-mediated quorum-sensing (QS) regulatory system was involved in secretion of fouling-causing SMP.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Biofouling , Bacterial Proteins/metabolism , Bioreactors/microbiology , Coculture Techniques/methods , Homoserine/analogs & derivatives , Homoserine/metabolism , Lactones/metabolism , Quorum Sensing , Sewage/microbiology , Waste Disposal, Fluid/methods
4.
Biotechnol Lett ; 39(2): 253-259, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27812825

ABSTRACT

OBJECTIVE: To investigate a syntrophic interaction between Geobacter sulfurreducens and hydrogenotrophic methanogens in sludge-inoculated microbial fuel cell (MFC) systems running on glucose with an improved electron recovery at the anode. RESULTS: The presence of archaea in MFC reduces Coulombic efficiency (CE) due to their electron scavenging capability but, here, we demonstrate that a syntrophic interaction can occur between G. sulfurreducens and hydrogenotrophic methanogens via interspecies H2 transfer with improvement in CE and power density. The addition of the methanogenesis inhibitor, 2-bromoethanesulfonate (BES), resulted in the reduction in power density from 5.29 to 2 W/m3, and then gradually increased to the peak value of 5.5 W/m3 when BES addition was stopped. CONCLUSION: Reduction of H2 partial pressure by archaea is an efficient approach in improving power output in a glucose-fed MFC system using Geobacter sp. as an inoculum.


Subject(s)
Bioelectric Energy Sources/microbiology , Geobacter/metabolism , Glucose/metabolism , Methane/metabolism , Oxidation-Reduction
5.
Environ Sci Technol ; 50(17): 9515-23, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27427998

ABSTRACT

Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible.


Subject(s)
Bioreactors , Membranes, Artificial , Bioelectric Energy Sources , Biopolymers , Wastewater
6.
Water Res ; 100: 448-457, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27232989

ABSTRACT

Membrane fouling remains a major challenge for wider application of membrane bioreactors (MBRs) to wastewater treatment. Membrane fouling is mainly caused by microorganisms and their excreted microbial products. For development of more effective control strategies, it is important to identify and characterize the microorganisms that are responsible for membrane fouling. In this study, 41 bacterial strains were isolated from fouled microfiltration membranes in a pilot-scale MBR treating real municipal wastewater, and their membrane fouling potentials were directly measured using bench-scale cross-flow membrane filtration systems (CFMFSs) and related to their cellular properties. It was found that the fouling potential was highly strain dependent, suggesting that bacterial identification at the strain level is essential to identify key fouling-causing bacteria (FCB). The FCB showed some common cellular properties. The most prominent feature of FCB was that they formed convex colonies having swollen podgy shape and smooth lustrous surfaces with high water, hydrophilic organic matter and carbohydrate content. However, general and rigid biofilm formation potential as determined by microtiter plates and cell surface properties (i.e., hydrophobicity and surface charge) did not correlate with the fouling potential in this study. These results suggest that the fouling potential should be directly evaluated under filtration conditions, and the colony water content could be a useful indicator to identify the FCB.


Subject(s)
Membranes, Artificial , Wastewater , Bacteria , Bioreactors/microbiology , Filtration , Waste Disposal, Fluid
7.
Environ Sci Technol ; 48(19): 11204-10, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25181008

ABSTRACT

Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.


Subject(s)
Bioelectric Energy Sources , Carbon Dioxide , Electrodes , Carbonates/chemistry , Equipment Design , Hydrogen-Ion Concentration , Protons , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...