Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(15): 4678-4683, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36779264

ABSTRACT

This is the first report on slow magnetic relaxation in an S = 1/2 system based on a first-row transition metal ion with the polyoxometalate skeleton [(n-C4H9)4N]4H2[SiW11O39Cu] (1). The X-band electron-spin-resonance spectrum of 1 measured at room temperature indicates that the copper ion experiences significantly reduced intermolecular interactions compared to the potassium salt and that it adopts a five-coordinated square-pyramidal coordination geometry. The AC magnetic-susceptibility measurements revealed that 1 undergoes slow magnetic relaxation in an applied static magnetic field (Hdc). The extracted spin-lattice relaxation time (92 ms at 1.8 K and Hdc = 5000 Oe) for 5% magnetically diluted 1, [(n-C4H9)4N]4H2[SiW11O39Cu0.05Zn0.95] (dil.1), is comparable to those of other potential S = 1/2 spin qubits. A relaxation-time analysis indicated that Raman spin-lattice relaxation dominates even at low temperatures in an optimized field. The extracted Raman exponent (n = 2.30) is smaller than those of other S = 1/2 complexes that carry organic ligands, which implies that the decrease in relaxation time at higher temperatures is likely to be moderate.

2.
Chemistry ; 27(49): 12686-12692, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34137468

ABSTRACT

A novel pyrrolopyrrole azadipyrrin (Janus-PPAD) with Janus duality was synthesized by a Schiff base-forming reaction of diketopyrrolopyrrole. The orthogonal interactions of the hydrogen-bonding ketopyrrole and metal-coordinating azadipyrrin moieties in Janus-PPAD enabled the metal ions to be arranged at regular intervals: zinc(II) and cobalt(II) coordination provided metal-coordinated Janus-PPAD dimers, which can subsequently form hydrogen-bonded one-dimensional arrays both in solution and in the solid state. The supramolecular assembly of the zinc(II) complex in solution was investigated by 1 H NMR spectroscopy based on the isodesmic model, in which a binding constant for the elongation of assemblies is constant. Owing to the tetrahedral coordination, in the solid state, the cobalt(II) complex exhibited a slow magnetic relaxation due to the negative D value of -27.1 cm-1 with an effective relaxation energy barrier Ueff of 38.0 cm-1 . The effect of magnetic dilution on the relaxation behavior is discussed. The relaxation mechanism at low temperature was analyzed by considering spin lattice interactions and quantum tunneling effects. The easy-axis magnetic anisotropy was confirmed, and the relevant wave functions were obtained by ab initio CASSCF calculations.

3.
Inorg Chem ; 58(8): 5211-5220, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30932496

ABSTRACT

Syntheses of a novel pseudotetrahedral four-coordinate mononuclear Co(II) complex that has two halved phthalocyanine moieties as the ligands, [Co(half-Pc)2] (1), and its magnetic properties as a single molecule magnet (SMM) are reported. A one pot reaction of phthalonitrile and lithium methoxide followed by the coordination to a Co(II) ion gave 1 as an orange solid in a moderate yield. X-ray crystallography on 1 reveals tetragonally distorted coordination geometry around the Co(II) ion. The M- HT-1 plots suggest that 1 has large axial magnetic anisotropy. The ac magnetic susceptibility data of the magnetically diluted 1 (dil.1) clearly show that the complex acts as an SMM even in the absence of the external static magnetic field ( Hdc). The influence of intermolecular and intramolecular interactions for the magnetic relaxation behaviors has been discussed by comparison of the magnetic data of 1 and dil.1. The Orbach process is suggested as the predominant mechanism of magnetic relaxations in the high-temperature range, and the Arrhenius plots provide the effective relaxation energy barrier and pre-exponential factor of Ueff = 54.0 cm-1 and τ0 = 3.17 × 10-10 s, respectively. The direct estimation of the axial anisotropic parameter of 1 was successfully performed by high-field, multifrequency ESR measurements up to 55 T and 2.5 THz. The evaluated axial zero-field splitting (ZFS) energy of 57.0 cm-1 is comparable to the Ueff energy, confirming that the magnetic relaxations are initiated by the thermal excitation from the ground | M S⟩ = |±3/2⟩ states to the |±1/2⟩ states in the high-temperature range. The results of the ab initio calculations based on the CAS(7,5) SCF wave functions indicate that the ground states of 1 consist mainly of | M S⟩ = |±3/2⟩ states, while the first excited states are the mixture of | M S⟩ = |+1/2⟩ and |-1/2⟩.

SELECTION OF CITATIONS
SEARCH DETAIL
...