Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Genetics ; 149(1): 277-87, 1998 May.
Article in English | MEDLINE | ID: mdl-9584102

ABSTRACT

The colonial protochordate, Botryllus schlosseri, undergoes a genetically defined, natural transplantation reaction when the edges of two growing colonies interact. Peripheral blood vessels of each colony touch and will either fuse together to form a common vasculature between the colonies, or reject each other in an active blood-based inflammatory process in which the interacting vessels are cut off and the two colonies no longer interact. Previous studies have demonstrated that allorecognition in Botryllus is principally controlled by a single Mendelian locus named the fusion/histocompatibility (Fu/HC) locus, with multiple codominantly expressed alleles. However, identification and cloning of this locus has been difficult. We are taking a genomic approach in isolating this locus by creating a detailed genetic linkage map of the 725 Mbp Botryllus genome using DNA polymorphisms (primarily identified as AFLPs) as molecular genetic markers. DNA polymorphisms are identified in inbred laboratory strains of Fu/HC defined Botryllus, and their segregation and linkage is analyzed in a series of defined crosses. Using bulk segregant analysis, we have focused our mapping efforts on the Fu/HC region of the genome, and have generated an initial map which delineates the Fu/HC locus to a 5.5 cM region.


Subject(s)
Chromosome Mapping , Drosophila Proteins , Major Histocompatibility Complex/genetics , Protein Serine-Threonine Kinases/genetics , Urochordata/genetics , Animals , Crosses, Genetic , Lod Score , Models, Genetic , Pedigree
3.
Dev Dyn ; 194(1): 71-83, 1992 May.
Article in English | MEDLINE | ID: mdl-1421521

ABSTRACT

Botryllus schlosseri is a colonial ascidian whose asexually derived, clonally modular systems of zooids exhibit developmental synchrony. The blastogenic cycle culminates in a phase of programmed cell and zooid death called takeover, in which all functional zooids die over a 30 hr period, and are replaced by a new generation of individuals. Because of the weekly recurrence and magnitude of visceral death in this model organism, we have begun to characterize the mechanisms that govern takeover. Here we describe a monoclonal antibody (B3F12.9) that recognizes a novel 57 Kd polypeptide (under reducing conditions) localized to the perivisceral extracellular matrix (PVEM) of buds and zooids, as well as blood cells of Botryllus by immunofluorescence and immunogold labeling of tissue sections. During their active feeding phase, zooids exhibited a uniform labeling pattern of PVEM along their anteroposterior (A-P) axis. At the onset of takeover (T = 3 hr), B3F12.9 immunostaining became diffuse or absent at the anterior end, which paralleled the axis of contraction of the dying zooid, whereas the posterior end retained its labeling integrity. During mid (T = 15 hr) to late (T = 28 hr) takeover, issue damage was extensive, large blood macrophages and other B3F12.9 immunoreactive blood cells invaded the peribranchial cavity, whereas PVEM labeling gradually disappeared along the entire A-P axis. These findings indicate that takeover is a dynamic process in which extracellular matrix breakdown proceeds in a polarized fashion, beginning at the anterior end of each zooid and gradually propagating toward the posterior end.


Subject(s)
Apoptosis/physiology , Urochordata/growth & development , Animals , Extracellular Matrix Proteins/metabolism , Urochordata/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL