Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
JACC Basic Transl Sci ; 8(8): 939-954, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37719429

ABSTRACT

After ischemic injury, immune cells mediate maladaptive cardiac remodeling. Extracellular matrix biomaterials may redirect inflammation toward repair. Pericardial fluid contains pro-reparative immune cells, potentially leverageable by biomaterials. Herein, we explore how pericardial delivery of a micronized extracellular matrix biomaterial affects cardiac healing. In noninfarcted mice, pericardial delivery increases pericardial and myocardial eosinophil counts. This response is sustained after myocardial infarction, stimulating an interleukin 4 rich milieu. Ultimately, the biomaterial improves postinfarct vascularization and cardiac function; and eosinophil-knockout negates these benefits. For the first time, to our knowledge, we demonstrate the therapeutic potential of pericardial biomaterial delivery and the eosinophil's critical role in biomaterial-mediated postinfarct repair.

2.
Can J Cardiol ; 39(8): 1078-1089, 2023 08.
Article in English | MEDLINE | ID: mdl-37270165

ABSTRACT

The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.


Subject(s)
Myocardial Infarction , Pericardial Effusion , Pericarditis , Humans , Mice , Animals , Pericardium , Pericarditis/etiology , Myocardial Infarction/complications , Pericardial Effusion/etiology
3.
Front Immunol ; 14: 1111819, 2023.
Article in English | MEDLINE | ID: mdl-36926341

ABSTRACT

Cardiac and pericardial macrophages contribute to both homeostatic and pathophysiological processes. Recent advances have identified a vast repertoire of these macrophage populations in and around the heart - broadly categorized into a CCR2+/CCR2- dichotomy. While these unique populations can be further distinguished by origin, localization, and other cell surface markers, further exploration into the role of cardiac and pericardial macrophage subpopulations in disease contributes an additional layer of complexity. As such, novel transgenic models and exogenous targeting techniques have been employed to evaluate these macrophages. In this review, we highlight known cardiac and pericardial macrophage populations, their functions, and the experimental tools used to bolster our knowledge of these cells in the cardiac context.


Subject(s)
Heart , Macrophages , Heart/physiology , Macrophages/metabolism , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...