Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24111411

ABSTRACT

An intelligent recovery classification and monitoring system (IRCMS) for post Anterior Cruciate Ligament (ACL) reconstruction has been developed in this study. This system provides an objective assessment and monitoring of the rehabilitation progress by integrating 3-D kinematics and neuromuscular signals recorded through wearable motion and electromyography sensors, respectively. The data from a group of healthy and ACL reconstructed subjects were collected for normal/brisk walking (4-6km/h) and single leg balance (eyes open and eyes closed) testing activities. Fuzzy clustering and fuzzy nearest neighbor methods have been used to classify the collected data into different groups for each activity. The classification accuracy of the system is found to be 94.49% for 4 km/h walking speed, 95.41% for 5 km/h walking speed, 96.00% for 6 km/h walking speed, 94.44% for single leg balance testing with eyes open and 95.83% for single leg balance testing with eyes closed. The recovery status of a subject is evaluated based on different activities assessed and the overall assessment is done using Choquet integral fusion technique. Further, biofeedback mechanism has been developed using a visual monitoring system which provides the variations in strength/activation of knee flexors/extensors and 3-D joint kinematics. This integrated system can be used as an assistive tool by sports trainers, coaches and clinicians for monitoring overall progress of athletes' rehabilitation and classifying their recovery stage for multiple activities.


Subject(s)
Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament/surgery , Electromyography/instrumentation , Adult , Athletes , Biofeedback, Psychology , Biomechanical Phenomena , Cluster Analysis , Electromyography/methods , Female , Fuzzy Logic , Humans , Knee , Knee Joint/surgery , Male , Motion , Reproducibility of Results , Software , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL