Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Virol ; 97(9): e0057223, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37695056

ABSTRACT

The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.


Subject(s)
Diarrhea Viruses, Bovine Viral , Viral Nonstructural Proteins , Virus Replication , Humans , Diarrhea Viruses, Bovine Viral/genetics , Hepacivirus/metabolism , Mutation , Viral Nonstructural Proteins/metabolism , Virus Assembly , Cell Line , Animals
2.
PLoS Pathog ; 18(10): e1010895, 2022 10.
Article in English | MEDLINE | ID: mdl-36215335

ABSTRACT

The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Assembly/genetics , Virus Replication/physiology , Cell Line , Virion/metabolism , Hepatitis C/metabolism , Morphogenesis , Peptide Hydrolases/metabolism
3.
J Virol ; 96(15): e0198021, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35852352

ABSTRACT

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Subject(s)
Molecular Chaperones , Pestivirus Infections , Pestivirus , Swine , Virus Replication , Animals , Cell Line , Coenzymes , Genome, Viral/genetics , Host-Pathogen Interactions , Molecular Chaperones/genetics , Pestivirus/classification , Pestivirus/enzymology , Pestivirus/growth & development , Pestivirus Infections/veterinary , RNA, Viral/genetics , Swine/virology , Swine Diseases/virology , Viral Proteases/metabolism , Virus Replication/genetics
4.
PLoS Pathog ; 18(6): e1010644, 2022 06.
Article in English | MEDLINE | ID: mdl-35727826

ABSTRACT

Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.


Subject(s)
Hepacivirus , Viral Nonstructural Proteins , Hepacivirus/enzymology , Hepacivirus/metabolism , Hepatitis C/virology , Humans , Peptide Hydrolases/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication
5.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: mdl-34676824

ABSTRACT

Pestiviruses like bovine viral diarrhoea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae. A special feature of the Flaviviridae is the importance of nonstructural (NS) proteins for both genome replication and virion morphogenesis. The NS2-3-4A region and its regulated processing by the NS2 autoprotease and the NS3/4A protease plays a central role in the pestiviral life cycle. We report the identification and characterization of a novel internal cleavage in BVDV NS2, which is mediated by the NS3/4A protease. Further mapping using the NS2 of BVDV-1 strain NCP7 showed that cleavage occurs between L188 and G189. This cleavage site represents a novel sequence motif recognized by the NS3/4A protease and is conserved between the pestivirus species A, B and D. Inhibition of this internal NS2 cleavage by mutating the cleavage site did not cause obvious effects on RNA replication or virion morphogenesis in cultured cell lines. Accordingly, this novel internal NS2 cleavage adds an additional layer to the already complex polyprotein processing of Pestiviruses and might further extend the repertoires of the multifunctional NS2. However, unravelling of the functional relevance of this novel processing event in NS2, therefore, awaits future in vivo studies.


Subject(s)
Diarrhea Virus 1, Bovine Viral/metabolism , Peptide Hydrolases/metabolism , Pestivirus/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Diarrhea Virus 1, Bovine Viral/enzymology , Pestivirus/chemistry , Pestivirus/enzymology , Viral Nonstructural Proteins/genetics , Virus Replication
6.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33568504

ABSTRACT

Pestiviruses such as bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae and represent pathogens of outstanding veterinary relevance. Pestiviruses enter cells via receptor-mediated endocytosis. For entry in bovine cells, complement regulatory protein CD46bov serves as a cellular receptor for BVDV. In this study, the role of porcine CD46pig in cellular entry was investigated for the recently discovered atypical porcine pestivirus (APPV), CSFV, and Bungowannah virus (BuPV) in order to elucidate the observed differences in host cell tropism. A cell culture-adapted APPV variant, which shows enhanced viral replication in vitro, was generated and demonstrated a strict tropism of APPV for porcine cells. One of the porcine cell lines displayed areas of CD46pig-expressing cells and areas of nonexpressing cells, and one single cell line revealed not to express any CD46pig The CD46pig-deficient porcine lymphoma cell line, known to facilitate CSFV replication, was the only porcine cell line nonpermissive to APPV, indicating a significant difference in the entry mechanism of APPV and CSFV. Infection experiments with a set of genetically engineered CD46pig knockout cells confirmed that CD46pig is a major receptor of APPV as CD46bov is for BVDV. In contrast, it is apparently not an essential determinant in host cell entry of other porcine pestiviruses such as CSFV and BuPV. Existence of a CD46pig-independent entry mechanism illustrates that the pestiviral entry process is more diverse than previously recognized.IMPORTANCE Pestiviruses comprise animal pathogens such as classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV) that cause notifiable diseases with great economic impact. Several additional pestivirus species affecting animal health were recently identified, including atypical porcine pestivirus (APPV). APPV is associated with health problems in piglets and is highly abundant in pig populations worldwide. Complement control protein CD46 serves as a receptor for diverse bacterial and viral pathogens, including particular adenoviruses, herpesviruses, measles virus (MeV), and BVDV. Porcine CD46 (CD46pig) was suggested to be a major receptor for CSFV. Here, we identified remarkable differences in relevance of CD46pig during entry of porcine pestiviruses. Resembling BVDV, efficient APPV infection in cell culture depends on CD46pig, while other porcine pestiviruses can efficiently enter and infect cells in the absence of CD46pig Thus, the study provides insights into the entry process of these pathogens and may help to understand differences in their biology.


Subject(s)
Classical Swine Fever Virus/physiology , Classical Swine Fever/virology , Membrane Cofactor Protein/physiology , Receptors, Virus/physiology , Viral Tropism , Virus Internalization , Animals , Cell Line , Membrane Cofactor Protein/immunology , Swine
8.
PLoS Pathog ; 11(3): e1004736, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25774920

ABSTRACT

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.


Subject(s)
Hepacivirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Blotting, Western , Cell Line , Conserved Sequence , Electroporation , Enzyme Activation/physiology , Genome, Viral , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Protein Structure, Quaternary , Transfection , Viral Nonstructural Proteins/chemistry , Virus Replication/physiology
9.
J Virol ; 90(6): 2868-83, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719260

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE: Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional organization of viral proteins within this structure. We have complemented protein-encoded defects in HCV by constructing subgenomic HCV transcripts capable of simultaneously expressing both a mutated and functional polyprotein precursor needed for RNA genome replication (intragenomic replicons). Our results reveal that HCV relies on two interdependent sets of protein complexes to support viral replication. They also show that the intragenomic replicon offers a unique way to study replication complex assembly, as it enables improved composite polyprotein complex formation compared to traditional trans-complementation systems. Finally, the differential behavior of distinct NS3 helicase knockout mutations hints that certain conformations of this enzyme might be particularly deleterious for replication.


Subject(s)
Hepacivirus/physiology , Polyproteins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , DNA Mutational Analysis , Polyproteins/genetics , Protein Multimerization , Viral Nonstructural Proteins/genetics
10.
J Virol ; 88(1): 82-98, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24131714

ABSTRACT

Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.


Subject(s)
Diarrhea Viruses, Bovine Viral/metabolism , Viral Nonstructural Proteins/physiology , Animals , Base Sequence , Cattle , Cells, Cultured , DNA Primers , Diarrhea Viruses, Bovine Viral/physiology , Electrophoresis, Polyacrylamide Gel , Electroporation , Viral Nonstructural Proteins/genetics
11.
Cell ; 142(3): 368-74, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20691898

ABSTRACT

In mammalian cells, newly synthesized mRNAs undergo a pioneer round of translation that is important for mRNA quality control. Following maturation of messenger ribonucleoprotein particles during and after the pioneer round, steady-state cycles of mRNA translation generate most of the cell's proteins. Translation factors, RNA-binding proteins, and targets of signaling pathways that are particular to newly synthesized mRNAs regulate critical functions of the pioneer round.


Subject(s)
Protein Biosynthesis , RNA, Messenger/metabolism , Animals , Cell Physiological Phenomena , Humans , RNA Stability , RNA, Messenger/genetics , Ribonucleoproteins/metabolism , Ribosomes/metabolism
12.
F1000 Biol Rep ; 1: 90, 2009.
Article in English | MEDLINE | ID: mdl-20376293

ABSTRACT

Telomeres protect linear chromosome ends from being recognized and processed as double-strand breaks by DNA repair activities. This protective function of telomeres is essential for chromosome stability. Until recently, telomeres have been considered to be transcriptionally silent. This notion was overturned in a series of recent papers that describe the existence of telomeric repeat-containing RNAs (TERRAs) in vertebrates and yeast. Here, we summarize recent developments in this field of telomere research, in particular the possible mechanisms that control TERRA expression.

13.
Nat Rev Genet ; 9(9): 699-712, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18679436

ABSTRACT

Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events - some not obviously related to NMD - that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners.


Subject(s)
Codon, Nonsense/genetics , Genome , RNA Stability , Animals , Genomic Instability , Homeostasis , Humans
14.
Cell ; 133(2): 314-27, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18423202

ABSTRACT

In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the translation initiation factor eIF3 and mRNA decay factors. Phospho-Upf1 interacts directly with eIF3 and inhibits the eIF3-dependent conversion of 40S/Met-tRNA(i)(Met)/mRNA to translationally competent 80S/Met-tRNA(i)(Met)/mRNA initiation complexes to repress continued translation initiation. Consistent with phospho-Upf1 impairing eIF3 function, NMD fails to detectably target nonsense-containing transcripts that initiate translation independently of eIF3 from the CrPV IRES. There is growing evidence that translational repression is a key transition that precedes mRNA delivery to the degradation machinery. Our results uncover a critical step during NMD that converts a pioneer translation initiation complex to a translationally compromised mRNP.


Subject(s)
Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Trans-Activators/metabolism , Animals , COS Cells , Chlorocebus aethiops , Codon, Nonsense , HeLa Cells , Hepacivirus/metabolism , Humans , Phosphorylation , RNA Helicases , Ribonucleoproteins/metabolism
15.
EMBO Rep ; 9(5): 446-51, 2008 May.
Article in English | MEDLINE | ID: mdl-18369367

ABSTRACT

Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA. Here, we provide evidence that NMD triggered by translation initiation at the EMCV IRES, similar to NMD triggered by translation initiation at an mRNA cap, targets CBP80/20-bound mRNA but does not detectably target eIF4E-bound mRNA. We show that EMCV IRES-initiated translation undergoes a CBP80/20-associated pioneer round of translation that results in CBP80/20-dependent and Upf factor-dependent NMD when translation terminates prematurely.


Subject(s)
Codon, Nonsense/metabolism , Encephalomyocarditis virus/genetics , Nuclear Cap-Binding Protein Complex/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Dimerization , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , HeLa Cells , Humans , Nuclear Cap-Binding Protein Complex/genetics , RNA Helicases , RNA, Messenger/genetics , RNA-Binding Proteins , Ribosomes/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Genes Dev ; 21(15): 1833-56, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17671086

ABSTRACT

Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.


Subject(s)
RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing , Animals , Codon, Nonsense , Codon, Terminator , Eukaryotic Cells , Evolution, Molecular , Gene Expression , Gene Silencing , Humans , Mammals/genetics , Mammals/metabolism , Models, Genetic , Mutation , Peptide Chain Elongation, Translational , Protein Biosynthesis , RNA Stability , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
17.
RNA ; 13(10): 1675-92, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17684232

ABSTRACT

Unraveling the molecular basis of the life cycle of hepatitis C virus (HCV), a prevalent agent of human liver disease, entails the identification of cell-encoded factors that participate in the replication of the viral RNA genome. This study provides evidence that the so-called NF/NFAR proteins, namely, NF90/NFAR-1, NF110/NFAR-2, NF45, and RNA helicase A (RHA), which mostly belong to the dsRBM protein family, are involved in the HCV RNA replication process. NF/NFAR proteins were shown to specifically bind to replication signals in the HCV genomic 5' and 3' termini and to promote the formation of a looplike structure of the viral RNA. In cells containing replicating HCV RNA, the generally nuclear NF/NFAR proteins accumulate in the cytoplasmic viral replication complexes, and the prototype NFAR protein, NF90/NFAR-1, stably interacts with a viral protein. HCV replication was inhibited in cells where RNAi depleted RHA from the cytoplasm. Likewise, HCV replication was hindered in cells that contained another NF/NFAR protein recruiting virus. The recruitment of NF/NFAR proteins by HCV is assumed to serve two major purposes: to support 5'-3' interactions of the viral RNA for the coordination of viral protein and RNA synthesis and to weaken host-defense mechanisms.


Subject(s)
Hepacivirus/metabolism , RNA, Viral/metabolism , Virus Replication , Base Sequence , Cell Nucleus/chemistry , Hepacivirus/chemistry , Humans , Molecular Sequence Data , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , RNA, Viral/chemistry , Viral Proteins/metabolism
18.
Virology ; 333(2): 349-66, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15721367

ABSTRACT

The 5' non-translated regions (5'NTRs) of hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV) initiate translation of the viral RNA genome through an internal ribosomal entry site (IRES) and operate as major determinants of the RNA replication cycle. We report on comparative studies with both virus systems demonstrating that the functional organization of the 5'NTRs of HCV and BVDV shows evident differences despite a similar RNA structure. In the BVDV 5'NTR, replication signals are restricted to the 5' terminal domain I. With HCV, we defined specific replication signals in domain I but also in domains II and III that constitute the functional IRES. While the BVDV domain I supports IRES activity, the HCV domain I appears to down-regulate IRES function. These data suggest that HCV and BVDV apply different mechanisms to coordinate viral protein and RNA synthesis, which may explain differences in the replication efficiency of both related viruses.


Subject(s)
5' Untranslated Regions , Diarrhea Viruses, Bovine Viral/growth & development , Diarrhea Viruses, Bovine Viral/genetics , Hepacivirus/growth & development , Hepacivirus/genetics , Animals , Base Sequence , Cattle , Diarrhea Viruses, Bovine Viral/physiology , Genome, Viral , Hepacivirus/physiology , Humans , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/genetics , Species Specificity , Virus Replication/genetics
19.
RNA ; 10(10): 1637-52, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15383680

ABSTRACT

The genomes of positive-strand RNA viruses strongly resemble cellular mRNAs. However, besides operating as a messenger to generate the virus-encoded proteins, the viral RNA serves also as a template during replication. A central issue of the viral life cycle, the coordination of protein and RNA synthesis, is yet poorly understood. Examining bovine viral diarrhea virus (BVDV), we report here on the role of the variable 3'V portion of the viral 3' nontranslated region (3'NTR). Genetic studies and structure probing revealed that 3'V represents a complex RNA motif that is composed of synergistically acting sequence and structure elements. Correct formation of the 3'V motif was shown to be an important determinant of the viral RNA replication process. Most interestingly, we found that a proper conformation of 3'V is required for accurate termination of translation at the stop-codon of the viral open reading frame and that efficient termination of translation is essential for efficient replication of the viral RNA. Within the viral 3'NTR, the complex 3'V motif constitutes also the binding site of recently characterized cellular host factors, the so-called NFAR proteins. Considering that the NFAR proteins associate also with the 5'NTR of the BVDV genome, we propose a model where the viral 3'NTR has a bipartite functional organization: The conserved 3' portion (3'C) is part of the nascent replication complex; the variable 5' portion (3'V) is involved in the coordination of the viral translation and replication. Our data suggest the accuracy of translation termination as a sophisticated device determining viral adaptation to the host.


Subject(s)
Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , 3' Untranslated Regions , Animals , Base Sequence , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/physiology , Models, Biological , Molecular Sequence Data , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Peptide Chain Termination, Translational , Protein Biosynthesis , RNA, Viral/chemistry , Virus Replication
20.
EMBO J ; 22(21): 5655-65, 2003 Nov 03.
Article in English | MEDLINE | ID: mdl-14592965

ABSTRACT

A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. Here we describe a group of host factors designated as 'NFAR proteins' that are recruited by the replication machinery of bovine viral diarrhea virus, a close relative of the human pathogen hepatitis C virus. The NFAR proteins associate specifically with both the termini of the viral RNA genome involving regulatory elements in the 5' and 3' non-translated regions. Modification of the protein interaction sites in the 3' non-translated region yielded viral RNAs that were replication deficient. Viral replication was also inhibited by RNAi approaches that reduced the concentration of RNA helicase A, a member of the NFAR group, in the host cell's cytoplasm. Further experimental data suggest that NFAR proteins mediate a circular conformation of the viral genome that may be important for the coordination of translation and replication. Because NFAR proteins are presumed components of the antiviral response, we suspect that viral recruitment may also serve to weaken cellular defense mechanisms.


Subject(s)
Diarrhea Viruses, Bovine Viral/physiology , Phosphoproteins , RNA-Binding Proteins/physiology , 3' Untranslated Regions , Animals , Base Sequence , Binding Sites , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/growth & development , Genome, Viral , HeLa Cells , Humans , Models, Biological , Molecular Sequence Data , Nuclear Factor 90 Proteins , Nucleic Acid Conformation , RNA Interference , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/isolation & purification , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...