Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 44(4): 400-409, 2017 Apr.
Article in English | MEDLINE | ID: mdl-32480573

ABSTRACT

Hordeum marinum Huds. is a waterlogging-tolerant wild relative of wheat (Triticum aestivum L.). Greater root porosity (gas volume per root volume) and formation of a barrier to reduce root radial O2 loss (ROL) contribute to the waterlogging tolerance of H. marinum and these traits are evident in some H. marinum-wheat amphiploids. We evaluated root porosity, ROL patterns and tolerance to hypoxic stagnant conditions for 10 various H. marinum (two accessions) disomic chromosome addition (DA) lines in wheat (two varieties), produced from two H. marinum-wheat amphiploids and their recurrent wheat parents. None of the DA lines had a barrier to ROL or higher root porosity than the wheat parents. Lack of a root ROL barrier in the six DA lines for H. marinum accession H21 in Chinese Spring (CS) wheat indicates that the gene(s) for this trait do not reside on one of these six chromosomes; unfortunately, chromosome 3 of H. marinum has not been isolated in CS. Unlike the H21-CS amphiploid, which formed a partial ROL barrier in roots, the H90-Westonia amphiploid and the four derived DA lines available did not. The unaltered root aeration traits in the available DA lines challenge the strategy of using H. marinum as a donor of these traits to wheat.

2.
New Phytol ; 190(2): 499-508, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21054414

ABSTRACT

• Wide hybridization of waterlogging-tolerant Hordeum marinum with wheat (Triticum aestivum) to produce an amphiploid might be one approach to improve waterlogging tolerance in wheat. • Growth, root aerenchyma and porosity, and radial oxygen loss (ROL) along roots were measured in four H. marinum-wheat amphiploids and their parents (four accessions of H. marinum and Chinese Spring wheat) in aerated or stagnant nutrient solution. A soil experiment was also conducted. • Hordeum marinum maintained shoot dry mass in stagnant nutrient solution, whereas the growth of wheat was markedly reduced (40% of aerated control). Two of the four amphiploids were more tolerant than wheat (shoot dry masses of 59-72% of aerated controls). The porosity of adventitious roots when in stagnant solution was higher in H. marinum (19-25%) and the four amphiploids (20-24%) than in wheat (16%). In stagnant solution, adventitious roots of H. marinum formed a strong ROL barrier in basal zones, whereas, in wheat, the barrier was weak. Two amphiploids formed a strong ROL barrier and two formed a moderate barrier when in stagnant solution. • This study demonstrates the transfer of higher root porosity and a barrier to ROL from H. marinum to wheat through wide hybridization and the production of H. marinum-wheat amphiploids.


Subject(s)
Hordeum/metabolism , Hybridization, Genetic , Oxygen/metabolism , Plant Roots/metabolism , Triticum/metabolism , Biomass , Cell Hypoxia , Culture Media/pharmacology , Hordeum/drug effects , Hordeum/growth & development , Hybridization, Genetic/drug effects , Oxygen/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Porosity/drug effects , Soil , Solutions/pharmacology , Triticum/drug effects , Triticum/growth & development
3.
J Exp Bot ; 58(5): 1219-29, 2007.
Article in English | MEDLINE | ID: mdl-17283374

ABSTRACT

Growth, grain production, and physiological traits were evaluated for Hordeum marinum, Triticum aestivum (cv. Chinese Spring), and a H. marinum-T. aestivum amphiploid, when exposed to NaCl treatments in a nutrient solution. H. marinum was more salt tolerant than T. aestivum and the amphiploid was intermediate, both for vegetative growth and relative grain production. H. marinum was best able to 'exclude' Na(+) and Cl(-), particularly at high external NaCl. At 300 mM NaCl, concentrations of Na(+) (153 micromol g(-1) dry mass) and Cl(-) (75 micromol g(-1) dry mass) in the youngest fully-expanded leaf blade of H. marinum were, respectively, only 7% and 4% of those in T. aestivum; and in the amphiploid the Na(+) and Cl(-) concentrations were 39% and 36% of those in T. aestivum. Glycinebetaine and proline concentrations in the youngest fully-expanded leaf blade of plants exposed to 200 mM NaCl were highest in H. marinum (128 and 60 micromol g(-1) dry mass, respectively), lowest in T. aestivum (85 and 37 micromol g(-1) dry mass), and intermediate in the amphiploid (108 and 54 micromol g(-1) dry mass). Thus, salt tolerance of H. marinum was expressed in the H. marinum-T. aestivum amphiploid.


Subject(s)
Hordeum/drug effects , Ploidies , Sodium Chloride/pharmacology , Triticum/drug effects , Chlorine/chemistry , Crosses, Genetic , Hordeum/genetics , Plant Leaves/chemistry , Plant Leaves/metabolism , Potassium/chemistry , Seeds/growth & development , Sodium/chemistry , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...