Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(11): eade4838, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36930716

ABSTRACT

The cointegration of artificial neuronal and synaptic devices with homotypic materials and structures can greatly simplify the fabrication of neuromorphic hardware. We demonstrate experimental realization of vanadium dioxide (VO2) artificial neurons and synapses on the same substrate through selective area carrier doping. By locally configuring pairs of catalytic and inert electrodes that enable nanoscale control over carrier density, volatility or nonvolatility can be appropriately assigned to each two-terminal Mott memory device per lithographic design, and both neuron- and synapse-like devices are successfully integrated on a single chip. Feedforward excitation and inhibition neural motifs are demonstrated at hardware level, followed by simulation of network-level handwritten digit and fashion product recognition tasks with experimental characteristics. Spatially selective electron doping opens up previously unidentified avenues for integration of emerging correlated semiconductors in electronic device technologies.

2.
Adv Mater ; 35(37): e2203352, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35723973

ABSTRACT

The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.

3.
Science ; 375(6580): 533-539, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113713

ABSTRACT

Reconfigurable devices offer the ability to program electronic circuits on demand. In this work, we demonstrated on-demand creation of artificial neurons, synapses, and memory capacitors in post-fabricated perovskite NdNiO3 devices that can be simply reconfigured for a specific purpose by single-shot electric pulses. The sensitivity of electronic properties of perovskite nickelates to the local distribution of hydrogen ions enabled these results. With experimental data from our memory capacitors, simulation results of a reservoir computing framework showed excellent performance for tasks such as digit recognition and classification of electrocardiogram heartbeat activity. Using our reconfigurable artificial neurons and synapses, simulated dynamic networks outperformed static networks for incremental learning scenarios. The ability to fashion the building blocks of brain-inspired computers on demand opens up new directions in adaptive networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...