Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 73(7): 2135-43, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17277198

ABSTRACT

Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods.


Subject(s)
Bacillus/metabolism , Epsilonproteobacteria/metabolism , Nanoparticles , Tellurium/metabolism , Anaerobiosis , Bacillus/growth & development , Electron Transport , Microscopy, Electron , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Tellurium/chemistry
2.
Nature ; 430(6995): 68-71, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15229598

ABSTRACT

The contamination of ground waters, abstracted for drinking and irrigation, by sediment-derived arsenic threatens the health of tens of millions of people worldwide, most notably in Bangladesh and West Bengal. Despite the calamitous effects on human health arising from the extensive use of arsenic-enriched ground waters in these regions, the mechanisms of arsenic release from sediments remain poorly characterized and are topics of intense international debate. We use a microscosm-based approach to investigate these mechanisms: techniques of microbiology and molecular ecology are used in combination with aqueous and solid phase speciation analysis of arsenic. Here we show that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal. We also show that, for the sediments in this study, arsenic release took place after Fe(III) reduction, rather than occurring simultaneously. Identification of the critical factors controlling the biogeochemical cycling of arsenic is one important contribution to fully informing the development of effective strategies to manage these and other similar arsenic-rich ground waters worldwide.


Subject(s)
Arsenic/metabolism , Bacteria/metabolism , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Metals/metabolism , Aerobiosis , Anaerobiosis , Bacteria/genetics , Bacteria/isolation & purification , Bangladesh , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , India , Iron/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...