Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 25(1): 216, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783298

ABSTRACT

The growing concern of pediatric mortality demands heightened preparedness in clinical settings, especially within intensive care units (ICUs). As respiratory-related admissions account for a substantial portion of pediatric illnesses, there is a pressing need to predict ICU mortality in these cases. This study based on data from 1188 patients, addresses this imperative using machine learning techniques and investigating different class balancing methods for pediatric ICU mortality prediction. This study employs the publicly accessible "Paediatric Intensive Care database" to train, validate, and test a machine learning model for predicting pediatric patient mortality. Features were ranked using three machine learning feature selection techniques, namely Random Forest, Extra Trees, and XGBoost, resulting in the selection of 16 critical features from a total of 105 features. Ten machine learning models and ensemble techniques are used to make accurate mortality predictions. To tackle the inherent class imbalance in the dataset, we applied a unique data partitioning technique to enhance the model's alignment with the data distribution. The CatBoost machine learning model achieved an area under the curve (AUC) of 72.22%, while the stacking ensemble model yielded an AUC of 60.59% for mortality prediction. The proposed subdivision technique, on the other hand, provides a significant improvement in performance metrics, with an AUC of 85.2% and an accuracy of 89.32%. These findings emphasize the potential of machine learning in enhancing pediatric mortality prediction and inform strategies for improved ICU readiness.


Subject(s)
Hospital Mortality , Intensive Care Units, Pediatric , Machine Learning , Humans , Child , Hospital Mortality/trends , Male , Female , Child, Preschool , Infant , Intensive Care Units, Pediatric/statistics & numerical data , Databases, Factual/trends , Adolescent , Infant, Newborn , Predictive Value of Tests , Respiratory Tract Diseases/mortality , Respiratory Tract Diseases/diagnosis
2.
J Clin Med ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37685724

ABSTRACT

BACKGROUND: Sepsis, a life-threatening infection-induced inflammatory condition, has significant global health impacts. Timely detection is crucial for improving patient outcomes as sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable attention for timely intervention. METHODS: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality. RESULTS: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation. CONCLUSIONS: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.

3.
Diagnostics (Basel) ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36140545

ABSTRACT

With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU requirement is crucial for efficient resource management and distribution. Early-prediction scoring systems for critically ill patients using mathematical models are available, but are not generalized for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best feature combination from the patient data at admission. A retrospective cohort study was conducted on a dataset collected from the pulmonology department of Moscow City State Hospital between 20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom 100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID positive patients and 75 non-COVID patients. Different feature selection techniques were investigated, and a stacking machine learning model was proposed and compared with eight different classification algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT), lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission were found to be important features for ICU-requirement risk prediction. The best performance was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only. The proposed work can help doctors to improve management through early prediction of the risk of need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for both types of patients.

4.
Sensors (Basel) ; 22(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35161664

ABSTRACT

Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature.


Subject(s)
Hypertension , Photoplethysmography , Blood Pressure , Blood Pressure Determination , Electrocardiography , Humans , Hypertension/diagnosis
5.
Health Inf Sci Syst ; 10(1): 1, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35096384

ABSTRACT

The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and techniques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocardial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster computer-aided diagnosis of COVID-19 and other cardiac abnormalities.

6.
Diagnostics (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34573923

ABSTRACT

Healthcare researchers have been working on mortality prediction for COVID-19 patients with differing levels of severity. A rapid and reliable clinical evaluation of disease intensity will assist in the allocation and prioritization of mortality mitigation resources. The novelty of the work proposed in this paper is an early prediction model of high mortality risk for both COVID-19 and non-COVID-19 patients, which provides state-of-the-art performance, in an external validation cohort from a different population. Retrospective research was performed on two separate hospital datasets from two different countries for model development and validation. In the first dataset, COVID-19 and non-COVID-19 patients were admitted to the emergency department in Boston (24 March 2020 to 30 April 2020), and in the second dataset, 375 COVID-19 patients were admitted to Tongji Hospital in China (10 January 2020 to 18 February 2020). The key parameters to predict the risk of mortality for COVID-19 and non-COVID-19 patients were identified and a nomogram-based scoring technique was developed using the top-ranked five parameters. Age, Lymphocyte count, D-dimer, CRP, and Creatinine (ALDCC), information acquired at hospital admission, were identified by the logistic regression model as the primary predictors of hospital death. For the development cohort, and internal and external validation cohorts, the area under the curves (AUCs) were 0.987, 0.999, and 0.992, respectively. All the patients are categorized into three groups using ALDCC score and death probability: Low (probability < 5%), Moderate (5% < probability < 50%), and High (probability > 50%) risk groups. The prognostic model, nomogram, and ALDCC score will be able to assist in the early identification of both COVID-19 and non-COVID-19 patients with high mortality risk, helping physicians to improve patient management.

SELECTION OF CITATIONS
SEARCH DETAIL
...