Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(8): 6854-6868, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252679

ABSTRACT

The Rift Valley fever virus (RVFV) is an emerging high-priority pathogen endemic in Africa with pandemic potential. There is no specific treatment or approved antiviral drugs for the RVFV. We previously developed a cell-based high-throughput assay to screen small molecules targeting the RVFV and identified a potential effective antiviral compound (1-N-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine) as a lead compound. Here, we investigated how structural modifications of the lead compound affected the biological properties and the antiviral effect against the RVFV. We found that the length of the 2-(3-aminopropylamino)ethyl chain of the compound was important for the compound to retain its antiviral activity. The antiviral activity was similar when the 2-(3-aminopropylamino)ethyl chain was replaced with a butyl piperazine chain. However, we could improve the cytotoxicity profile of the lead compound by changing the phenyl piperazine linker from the para-position (compound 9a) to the meta-position (compound 13a). Results from time-of-addition studies suggested that compound 13a might be active during virus post-entry and/or the replication phase of the virus life cycle and seemed to affect the K+ channel. The modifications improved the properties of our lead compound, and our data suggest that 13a is a promising candidate to evaluate further as a therapeutic agent for RVFV infection.

2.
iScience ; 24(12): 103469, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34812415

ABSTRACT

Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.

3.
Vector Borne Zoonotic Dis ; 21(10): 731-746, 2021 10.
Article in English | MEDLINE | ID: mdl-34424778

ABSTRACT

Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections.


Subject(s)
Aedes , Arboviruses , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/veterinary
4.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359995

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.


Subject(s)
Chikungunya virus/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Host-Pathogen Interactions/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Virus/genetics , Virus Internalization , Animals , Antibodies, Monoclonal/pharmacology , CHO Cells , Cell Line , Cell Line, Tumor , Chikungunya virus/drug effects , Chikungunya virus/growth & development , Chikungunya virus/immunology , Chlorocebus aethiops , Cricetulus , Endosomes/drug effects , Endosomes/immunology , Endosomes/metabolism , Epithelial Cells/immunology , Epithelial Cells/virology , Fibroblasts/immunology , Fibroblasts/virology , Gene Expression , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/immunology , Hepatocytes/immunology , Hepatocytes/virology , Host-Pathogen Interactions/immunology , Humans , Keratinocytes/immunology , Keratinocytes/virology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Transgenes , Vero Cells , Virus Internalization/drug effects , Axl Receptor Tyrosine Kinase
5.
Mar Drugs ; 12(2): 799-821, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24477283

ABSTRACT

Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 µM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.


Subject(s)
Actinobacteria/metabolism , Adenoviridae Infections/drug therapy , Adenoviridae/drug effects , Antiviral Agents/pharmacology , Adenoviridae Infections/virology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Aquatic Organisms/chemistry , Dose-Response Relationship, Drug , Drug Discovery/methods , Humans , Norway , Stereoisomerism
6.
Antimicrob Agents Chemother ; 56(11): 5735-43, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22908173

ABSTRACT

Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are responsible for lifelong latent infections in humans, with periods of viral reactivation associated with recurring ulcerations in the orofacial and genital tracts. In immunosuppressed patients and neonates, HSV infections are associated with severe morbidity and, in some cases, even mortality. Today, acyclovir is the standard therapy for the management of HSV infections. However, the need for novel antiviral agents is apparent, since HSV isolates resistant to acyclovir therapy are frequently isolated in immunosuppressed patients. In this study, we assessed the anti-HSV activity of the antiadenoviral compounds 2-[2-(2-benzoylamino)-benzoylamino]benzoic acid (benzavir-1) and 2-[4,5-difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid (benzavir-2) on HSV-1 and HSV-2. Both compounds were active against both viruses. Importantly, benzavir-2 had potency similar to that of acyclovir against both HSV types, and it was active against clinical acyclovir-resistant HSV isolates.


Subject(s)
Acyclovir/therapeutic use , Antiviral Agents/therapeutic use , Benzamides/therapeutic use , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Acyclovir/pharmacology , Adult , Aged, 80 and over , Animals , Antiviral Agents/pharmacology , Benzamides/pharmacology , Cell Line , Chlorocebus aethiops , Drug Resistance, Viral/drug effects , Female , Herpes Simplex/virology , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/growth & development , Herpesvirus 2, Human/isolation & purification , Humans , Male , Middle Aged , Viral Load/drug effects , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL