Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(39): 45895-45904, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37733269

ABSTRACT

We leverage first-principles density functional theory (DFT) calculations to understand the electrocatalytic processes in Mg-CO2 batteries, considering ruthenium oxide (RuO2) as an archetypical cathode catalyst. Our goal is to establish a mechanistic framework for understanding the charging and discharging reaction pathways and their influence on overpotentials. On the RuO2 (211) surface, we found reaction initiation through thermodynamically favorable adsorption of Mg followed by interactions with CO2. However, we found that the formation of carbonate (CO32-) and oxalate (C2O42-) intermediates via the activation of CO2 at the catalytic site is thermodynamically unfavorable. We predict that MgC2O4 will form as the discharge product due to its lower overpotential compared to MgCO3. However, MgC2O4 is thermodynamically unstable and is expected to decompose into MgCO3, MgO, and C as final discharge products. Through Bader charge analysis, we investigate the covalent interactions between intermediates and catalyst sites. Moreover, we study the electrochemical free energy profiles of the most favorable reaction pathways and determine discharge and charge overpotentials of 1.30 and 1.35 V, respectively. Our results underscore the importance of catalyst design for the cathode material to overcome performance limitations in nonaqueous Mg-CO2 batteries.

2.
ACS Appl Mater Interfaces ; 15(22): 26928-26938, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37243613

ABSTRACT

Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.

3.
J Chem Phys ; 158(14): 144117, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061473

ABSTRACT

Reactive force fields for molecular dynamics have enabled a wide range of studies in numerous material classes. These force fields are computationally inexpensive compared with electronic structure calculations and allow for simulations of millions of atoms. However, the accuracy of traditional force fields is limited by their functional forms, preventing continual refinement and improvement. Therefore, we develop a neural network-based reactive interatomic potential for the prediction of the mechanical, thermal, and chemical responses of energetic materials at extreme conditions. The training set is expanded in an automatic iterative approach and consists of various CHNO materials and their reactions under ambient and shock-loading conditions. This new potential shows improved accuracy over the current state-of-the-art force fields for a wide range of properties such as detonation performance, decomposition product formation, and vibrational spectra under ambient and shock-loading conditions.

4.
Cureus ; 15(2): e34659, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36909077

ABSTRACT

Background Plantar fasciitis is the most common cause of foot pain. Patients with plantar fasciitis typically present with 'first step pain,' which tends to decrease with activity and worse with heavy use. This study determines the effect of ultrasound-guided, single-dose, platelet-rich plasma (PRP) injection in patients with chronic plantar fasciitis. Materials and methods It was a quasi-experimental trial carried out in the Department of Physical Medicine and Rehabilitation, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, from March 2019 to March 2022. A total of 148 patients diagnosed with chronic plantar fasciitis were selected as samples. A total of 75 patients were allocated to group A (intra-lesional injection of autologous PRP with conservative management) and 73 patients to Group B (only conservative management). Both groups of patients were allocated to conservative management with exercises, shoe modification, activities of daily living (ADLs) instruction, and oral paracetamol. Results This study shows that in group A, the mean visual analog scale (VAS) score significantly reduced to 1.47±0.51 after six months of single-dose PRP injection (p<0.001). In group B, the VAS score also decreased substantially after conservative treatment. Though in groups A and B, pain reduction was significant, in group A, the pain was decreased more compared to group B and statistically significant differences were found between the two groups at the 12th week and 24th week. The foot function index (FFI) scores decreased significantly in group A after a single dose PRP injection, compared with group B treated with conventional therapy. In group A, FFI scores decreased from 49.09±5.72 to 7.67±3.41. The study revealed a significant difference between study groups in the 12th week and 24th week regarding FFI scores. Conclusion Ultrasound-guided intra-lesional autologous PRP Injection is safe and effective and recommended in patients with chronic plantar fasciitis, especially in recalcitrant cases after the failure of conservative treatment and corticosteroid injection.

5.
Small ; 18(34): e2202648, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35900063

ABSTRACT

The enhanced safety, superior energy, and power density of rechargeable metal-air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost-effective and stable bifunctional catalyst that can replace expensive platinum (Pt)-based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped ß-gallium oxide (ß-Ga2 O3 ) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn-air batteries. The Sn-doped ß-Ga2 O3 sample with 15% Sn (Snx =0.15 -Ga2 O3 ) displayed exceptional catalytic activity for a bulk, non-noble metal-based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx =0.15 -Ga2 O3 leads to a prototype Zn-air battery with a high-power density of 138 mW cm-2 and improved cycling stability compared to devices with benchmark Pt-based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in ß-Ga2 O3 aid in regulating the electron density distribution on the Sn-doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.

6.
ACS Appl Mater Interfaces ; 14(21): 24486-24496, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583340

ABSTRACT

The dissolution of intermediate lithium polysulfides (LiPS) into an electrolyte and their shuttling between the electrodes have been the primary bottlenecks for the commercialization of high-energy density lithium-sulfur (Li-S) batteries. While several two-dimensional (2D) materials have been deployed in recent years to mitigate these issues, their activity is strictly restricted to their edge-plane-based active sites. Herein, for the first time, we have explored a phase transformation phenomenon in a 2D material to enhance the number of active sites and electrocatalytic activity toward LiPS redox reactions. Detailed theoretical calculations demonstrate that phase transformation from the 2H to 1T' phase in a MoSe2 material activates the basal planes that allow for LiPS adsorption. The corresponding transformation mechanism and LiPS adsorption capabilities of the as-formed 1T'-MoSe2 were elucidated experimentally using microscopic and spectroscopic techniques. Further, the electrochemical evaluation of phase-transformed MoSe2 revealed its strong electrocatalytic activity toward LiPS reduction and their oxidation reactions. The 1T'-MoSe2-based cathode hosts for sulfur later provide a superior cycling performance of over 250 cycles with a capacity loss of only 0.15% per cycle along with an excellent Coulombic efficiency of 99.6%.

7.
ACS Appl Mater Interfaces ; 14(8): 10298-10307, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35167253

ABSTRACT

Multiple unfavorable features, such as poor electronic conductivity of sulfur cathodes, the dissolution and shuttling of sodium polysulfides (Na2Sn) in electrolytes, and the slower kinetics for the decomposition of solid Na2S, make sodium-sulfur batteries (NaSBs) impractical. To overcome these obstacles, novel double-transition metal (DTM) MXenes, Mo2TiC2T2, (T = O and S) are studied as an anchoring material (AM) to immobilize higher-order polysulfides and to expedite the otherwise slower kinetics of insoluble short-chain polysulfides. Density functional theory (DFT) calculations are carried out to justify and compare the effectiveness of Mo2TiC2S2 and Mo2TiC2O2 as AMs by analyzing their interactions with S8/Na2Sn (n = 1, 2, 4, 6, and 8). Mo2TiC2S2 provides moderate adsorption strength compared to Mo2TiC2O2, therefore, it is expected to effectively inhibit Na2Sn dissolution and shuttling without causing decomposition of Na2Sn. The calculated Gibbs free energies of the rate-determining step for sulfur reduction reactions (SRR) are found to be significantly lower (0.791 eV for S and 0.628 eV for O functionalization) than that in vacuum (1.442 eV), suggesting that the SRR is more thermodynamically favorable on Mo2TiC2T2 during discharge. Additionally, both Mo2TiC2S2 and Mo2TiC2O2 demonstrated effective electrocatalytic activity for the decomposition of Na2S, with a substantial reduction in the energy barrier to 1.59 eV for Mo2TiC2S2 and 1.67 eV for Mo2TiC2O2. While Mo2TiC2O2 had superior binding properties, structural distortion is observed in Na2Sn, which may adversely affect cyclability. On the other hand, because of its moderate binding energy, enhanced electronic conductivity, and significantly faster oxidative decomposition kinetics of polysulfides, Mo2TiC2S2 can be considered as an effective AM for suppressing the shuttle effect and improving the performance of NaSBs.

8.
ACS Appl Mater Interfaces ; 13(30): 35848-35855, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34284574

ABSTRACT

Room temperature sodium-sulfur (Na-S) batteries, because of their high theoretical energy density and low cost, are considered as a promising candidate for next-generation energy storage devices. However, the practical utilization of the Na-S batteries is greatly hindered by various deleterious factors such as dissolution of sodium polysulfides (Na2Sn) into the electrolyte commonly termed as "shuttle effect," sluggish decomposition of solid Na2S, and poor electronic conductivity of sulfur. To overcome the challenges, we introduced single-layer vanadium disulfide (VS2) as an anchoring material (AM) to immobilize higher-order polysulfides from the dissolution and also to accelerate the otherwise sluggish kinetics of insoluble short-chain polysulfides. We employ density functional theory (DFT) calculations to elucidate the Na2Sn interactions at the VS2 interfaces. We show that the adsorption strengths of various Na2Sn species on the VS2 basal plane are adequate (1.21-4.3 eV) to suppress the shuttle effect, and the structure of Na2Sn are maintained without any decomposition, which is necessary to mitigate capacity fading. The calculated projected density of states (PDOS) reveals that the metallic character of the pristine VS2 is retained even after Na2Sn adsorption. The calculated Gibbs free energy of each elementary sulfur reduction reaction indicates a significant decrement in the free energy barrier due to the catalytic activity of the VS2 surface. Furthermore, VS2 is found to be an excellent catalyst to significantly reduce the oxidative decomposition barrier of Na2S, which facilitates accelerated electrode kinetics and higher utilization of sulfur. Overall, VS2 with strong adsorption behavior, enhanced electronic conductivity, and improved oxidative decomposition kinetics of polysulfides can be considered as an effective AM to prevent the shuttle effect and to improve the performance of Na-S batteries.

9.
ACS Nano ; 15(8): 12945-12954, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34329560

ABSTRACT

We characterize the atomic processes that underlie forming, reset, and set in HfO2-based resistive random access memory (RRAM) cells through molecular dynamics (MD) simulations, using an extended charge equilibration method to describe external electric fields. By tracking the migration of oxygen ions and the change in coordination of Hf atoms in the dielectric, we characterize the formation and dissolution of conductive filaments (CFs) during the operation of the device with atomic detail. Simulations of the forming process show that the CFs form through an oxygen exchange mechanism, induced by a cascade of oxygen displacements from the oxide to the active electrode, as opposed to aggregation of pre-existing oxygen vacancies. However, the filament breakup is dominated by lateral, rather than vertical (along the filament), motion of vacancies. In addition, depending on the temperature of the system, the reset can be achieved through a redox effect (bipolar switch), where oxygen diffusion is governed by the applied bias, or by a thermochemical process (unipolar switch), where the diffusion is driven by temperature. Unlike forming and similar to reset, the set process involves lateral oxygen atoms as well. This is driven by field localization associated with conductive paths.

10.
Phys Chem Chem Phys ; 23(18): 11028-11038, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33942827

ABSTRACT

We use classical non-equilibrium molecular dynamics (NEMD) simulations to investigate the phonon thermal conductivity (PTC) of hexagonal boron nitride (hBN) supported stanene. At first, we examine the length dependent PTCs of bare stanene and hBN, and the stanene/hBN heterostructure and realize the dominance of the hBN layer to dictate the PTC in the heterostructure system. Afterward, we assess the length-independent bulk PTCs of these materials. The bulk PTCs at room temperature are found as ∼15.20 W m-1 K-1, ∼550 W m-1 K-1, and ∼232 W m-1 K-1 for bare stanene and hBN, and stanene/hBN, respectively. Moreover, our simulations reveal that bare stanene exhibits a substantially lower PTC compared to bare hBN, and the predicted PTC of stanene/hBN lies between those of stand-alone stanene and hBN. We also found that the PTC obtained for the stanene/hBN system from NEMD simulations nicely agrees with the theoretical formula developed to predict the PTC of heterostructures of two distinct materials. Temperature studies suggest that the PTC of the stanene/hBN heterostructure system follows a decreasing trend with increasing temperature. Additionally, corresponding phonon density of states (PDOS) and phonon dispersion data are provided to comprehensively understand the phonon properties of bare stanene and hBN, and stanene/hBN. Overall, this NEMD study would offer a deep understating towards the PTC of the stanene/hBN heterostructure and would widen the scope of its successful operations in future nanoelectronic, spintronic, and thermoelectric devices.

11.
J Chem Theory Comput ; 17(6): 3237-3251, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33970642

ABSTRACT

Reactive force fields provide an affordable model for simulating chemical reactions at a fraction of the cost of quantum mechanical approaches. However, classically accounting for chemical reactivity often comes at the expense of accuracy and transferability, while computational cost is still large relative to nonreactive force fields. In this Perspective, we summarize recent efforts for improving the performance of reactive force fields in these three areas with a focus on the ReaxFF theoretical model. To improve accuracy, we describe recent reformulations of charge equilibration schemes to overcome unphysical long-range charge transfer, new ReaxFF models that account for explicit electrons, and corrections for energy conservation issues of the ReaxFF model. To enhance transferability we also highlight new advances to include explicit treatment of electrons in the ReaxFF and hybrid nonreactive/reactive simulations that make it possible to model charge transfer, redox chemistry, and large systems such as reverse micelles within the framework of a reactive force field. To address the computational cost, we review recent work in extended Lagrangian schemes and matrix preconditioners for accelerating the charge equilibration method component of ReaxFF and improvements in its software performance in LAMMPS.

12.
Phys Chem Chem Phys ; 23(17): 10650-10661, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33904543

ABSTRACT

Ni-based super alloy Inconel-718 is ubiquitous in metal 3D printing where a high cooling rate and thermal gradient are present. These manufacturing conditions are conducive to high initial dislocation density and porosity or voids in the material. This work proposes a molecular dynamics (MD) analysis method that can examine the role of dislocations, cooling rates, voids, and their interactions governing the material properties and failure mechanisms in Inconel-718 using the Embedded Atom Method (EAM) potential. Throughout this work, three different structures - nanowires (NWs), nanopillars (NPs), and thin-plates - are used. The strain rate is varied from 108 s-1 to 1010 s-1 and the temperature is varied from 100 K to 800 K. Different cooling rates ranging from 0.5 × 1010 K s-1 to 1 × 1014 K s-1 are applied. Our results suggest that the high cooling rates create regular crystalline structures which result in high strength and ductility. In contrast, the lower cooling rates form a non-crystalline structure that exhibits low strength and a brittle nature. This brittle to ductile transition is observed solely due to the cooling rate at the nanoscale. Elimination of voids as a result of heat treatment is reported as well. Shockley dislocation is observed as the key factor during tensile plastic deformation. Increasing strain rates result in strain hardening and a higher dislocation density in tension. Our computational method is successful in capturing extensive sliding on the {111} shear plane due to dislocation, which leads to necking before fracture. Furthermore, notable mechanical properties are revealed by varying the temperature, size and strain rate. Our results detail a pathway to design machine parts with Inconel-718 alloy efficiently in a bottom-up approach.

13.
Phys Chem Chem Phys ; 23(10): 6241-6251, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33735331

ABSTRACT

Monolayer antimonene has drawn the attention of research communities due to its promising physical properties. However, the mechanical properties of antimonene have remained largely unexplored. In this work, we investigate the mechanical properties and fracture mechanisms of two stable phases of monolayer antimonene - ß-antimonene (puckered structure) and α-antimonene (buckled structure) - through molecular dynamics (MD) simulations. Our simulations reveal that a stronger chiral effect results in a greater anisotropic elastic behavior in α-antimonene than in ß-antimonene. We focus on crack-tip stress distribution using local volume averaged virial stress definition and derive the fracture toughness from the crack-line stress. Our calculated crack tip stress distribution ensures the applicability of linear elastic fracture mechanics (LEFM) for cracked antimonene allotropes with considerable accuracy up to a pristine structure. We evaluate the effect of temperature, strain rate, crack-length, and point-defect concentration on the strength and elastic properties. The tensile strength of antimonene degrades significantly with the increase of temperature, crack length and defect concentration. The elastic modulus is found to be less susceptible to temperature variation but is largely affected by the increase in defects. The strain rate exhibits a power law relationship between strength and fracture strain. Finally, we discuss the fracture mechanisms in the light of crack propagation and establish the relationship between the fracture mechanism and the observed anisotropic properties.

14.
Phys Chem Chem Phys ; 22(48): 28238-28255, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33295342

ABSTRACT

Bismuthene has opened up a new avenue in the field of nanotechnology because of its spectacular electronic and thermoelectric features. The strong spin-orbit-coupling enables its operation as the largest nontrivial bandgap topological insulator and quantum spin hall material at room temperature, which is unlikely for any other 2D material. It is also known to be the most promising thermoelectric material due to its remarkable thermoelectric properties, including a substantially high power factor. However, an in-depth understanding of the mechanical and thermal transport properties of bismuthene is crucial for its practical implementation and efficient operation. Employing the Stillinger-Weber potential, we utilized molecular dynamics simulations to inspect the mechanical strength and thermal conductivity of the monolayer ß-bismuthene for the first time. We analyzed the effect of temperature on the tensile mechanical properties along the armchair and zigzag directions of bismuthene nanosheets and found that increasing temperature causes a significant deterioration in these properties. The material shows superior fracture resistance with zigzag loading, whereas the armchair direction exhibits an improved elasticity. Next, we showed that increasing vacancy concentration and crack length notably reduce the fracture stress and strain of ß-bismuthene. Under all these conditions, ß-bismuthene showed a strong chirality effect under tensile loading. We also explored the fracture phenomena of a pre-cracked ß-bismuthene, which reveal that the armchair-directed crack possesses a higher fracture resistance than the zigzag-directed crack. Interestingly, branching phenomena occurred during crack propagation for the armchair crack; meanwhile, the crack propagates perpendicular to loading for the zigzag crack. Afterward, we investigated the effect of loading rate on the fracture properties of bismuthene along the armchair and zigzag directions. Finally, we calculated the thermal conductivity of bismuthene under the influence of temperature and vacancy and recorded a substantial decrement in thermal conductivity with increasing temperature and vacancy. The obtained results are comprehensively discussed in the light of phonon density of states, phonon dispersion spectrum, and phonon group velocities. It is also disclosed that the thermal conductivity of ß-bismuthene is considerably lower than that of other analogous honeycomb structures. This study can add a new dimension to the successful realization of bismuthene in future (opto)electronic, spintronic, and thermoelectric devices.

15.
J Phys Chem A ; 124(44): 9141-9155, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33112131

ABSTRACT

The response of high-energy-density materials to thermal or mechanical insults involves coupled thermal, mechanical, and chemical processes with disparate temporal and spatial scales that no single model can capture. Therefore, we developed a multiscale model for 1,3,5-trinitro-1,3,5-triazinane, RDX, where a continuum description is informed by reactive and nonreactive molecular dynamics (MD) simulations to describe chemical reactions and thermal transport. Reactive MD simulations under homogeneous isothermal and adiabatic conditions are used to develop a reduced-order chemical kinetics model. Coarse graining is done using unsupervised learning via non-negative matrix factorization. Importantly, the components resulting from the analysis can be interpreted as reactants, intermediates, and products, which allows us to write kinetics equations for their evolution. The kinetics parameters are obtained from isothermal MD simulations over a wide temperature range, 1200-3000 K, and the heat evolved is calibrated from adiabatic simulations. We validate the continuum model against MD simulations by comparing the evolution of a cylindrical hotspot 10 nm in diameter. We find excellent agreement in the time evolution of the hotspot temperature fields both in cases where quenching is observed and at higher temperatures for which the hotspot transitions into a deflagration wave. The validated continuum model is then used to assess the criticality of hotspots involving scales beyond the reach of atomistic simulations that are relevant to detonation initiation.

16.
Nanoscale ; 12(26): 14087-14095, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32583844

ABSTRACT

The practical applications of lithium selenium (Li-Se) batteries are impeded primarily due to the dissolution and migration of higher-order polyselenides (Li2Sen) into the electrolyte (known as the shuttle effect) and inactive deposition of lower-order polyselenides. The high electrical conductivity and mechanical strength of MXenes make them a suitable candidate to provide adequate anchoring to prevent polyselenide dissolution and improved electrochemical performance. Herein, we used density functional theory (DFT) calculations to understand the binding mechanism of Li2Sen on graphene and surface-functionalized Ti3C2 MXenes. We used graphene as a reference material to assess Li2Sen binding strengths on functionalized Ti3C2X2 (where X = S, O, F, and Cl). We observed that Ti3C2S2 and Ti3C2O2 exhibit superior anchoring behavior compared to graphene, Ti3C2F2, and Ti3C2Cl2. The calculated Li2Sen adsorption strengths, provided by S- and O-terminated Ti3C2, are greater than those of the commonly used ether-based electrolyte, which is a requisite for effective suppression of Li2Sen shuttling. Ti3C2X2 and graphene with adsorbed Li2Sen retain their structural integrity without chemical decomposition. Density of states (DOS) analysis demonstrates that the conductive behavior of Ti3C2X2 is preserved even after Li2Sen adsorption, which can provide electronic pathways to stimulate the redox electrochemistry of Li2Sen. Overall, our unprecedented simulation results reveal superior anchoring behavior of Ti3C2S2 and Ti3C2O2 for Li2Sen adsorption, and this developed understanding can be leveraged for designing carbon-free Ti3C2 MXene-based selenium cathode materials to boost the electrochemical performance of Li-Se batteries.

17.
ACS Appl Mater Interfaces ; 10(49): 43166-43176, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30422628

ABSTRACT

Electric double layer (EDL) dynamics in graphene field-effect transistors (FETs) gated with polyethylene oxide (PEO)-based electrolytes are studied by molecular dynamics (MD) simulations from picoseconds to nanoseconds and experimentally from microseconds to milliseconds. Under an applied field of approximately mV/nm, EDL formation on graphene FETs gated with PEO:CsClO4 occurs on the timescale of microseconds at room temperature and strengthens within 1 ms to a sheet carrier density of nS ≈ 1013 cm-2. Stronger EDLs (i.e., larger nS) are induced experimentally by pulsing with applied voltages exceeding the electrochemical window of the electrolyte; electrochemistry is avoided using short pulses of a few milliseconds. Dynamics on picosecond to nanosecond timescales are accessed using MD simulations of PEO:LiClO4 between graphene electrodes with field strengths of hundreds of mV/nm which is 100× larger than experiment. At 100 mV/nm, EDL formation initiates in sub-nanoseconds achieving charge densities up to 6 × 1013 cm-2 within 3 nanoseconds. The modeling shows that under sufficiently high electric fields, EDLs with densities ∼1013 cm-2 can form within a nanosecond, which is a timescale relevant for high-performance electronics such as EDL transistors (EDLTs). Moreover, the combination of experiment and modeling shows that the timescale for EDL formation ( nS = 1013 to 1014 cm-2) can be tuned by 9 orders of magnitude by adjusting the field strength by only 3 orders of magnitude.

18.
Phys Chem Chem Phys ; 20(25): 17289-17303, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29901673

ABSTRACT

To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

19.
RSC Adv ; 8(53): 30354-30365, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-35546866

ABSTRACT

Silicene has become a topic of interest nowadays due to its potential application in various electro-mechanical nanodevices. In our previous work on silicene, fracture stresses of single crystal and polycrystalline silicene have been investigated. Existence of defects in the form of cracks reduces the fracture strength of silicene nanosheets to a great extent. In this study, an engineering way has been proposed for improving the fracture stress of silicene nanosheets with a pre-existing crack by incorporating auxiliary cracks symmetrically in a direction perpendicular to the main crack. We call this mechanism the "Failure shielding mechanism". An extensive molecular dynamics simulation based analysis has been performed to capture the atomic level auxiliary crack-main crack interactions. It is found that the main crack tip stress distribution is significantly changed with the presence of auxiliary cracks for loading along both armchair and zigzag directions. The effects of temperature and the crack propagation speed of silicene have also been studied. Interestingly, in the case of loading along the zigzag direction, SW defect formation is observed at the tip of main crack. This leads to a reduction of the tip stress resulting in a more prominent failure shielding in case of zigzag loading than in armchair loading. Moreover, the position and length of the cracks as well as the loading directions have significant impacts on the tip stress distribution. Finally, this study opens the possibilities of strain engineering for silicene by proposing an engineering way to tailor the fracture strength of silicene.

20.
Phys Chem Chem Phys ; 20(1): 284-298, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29205239

ABSTRACT

Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O2) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/NixOy) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW's surface remarkably reduces the yield stress and Young's modulus, due to the increased softening effects with the decreasing NW diameter, compared to un-oxidized counterparts. Moreover, the onset of plastic deformation occurs at a relatively low yielding strain and stress level for the smaller diameter of oxide-coated Ni NWs in comparison to their pure counterparts. Furthermore, for pure Ni NWs, Young's modulus, the yielding stress and strain slightly decrease with the decrease in the diameter size of Ni NWs.

SELECTION OF CITATIONS
SEARCH DETAIL
...