Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IDCases ; 36: e01944, 2024.
Article in English | MEDLINE | ID: mdl-38681077

ABSTRACT

Nalidixic acid-resistant Salmonella enterica serotype Typhi is a well-known cause of enteric fever, and its prevalence is increasing worldwide. However, the incidence of enteric fever complicated by non-immune hemolytic anemia without co-existing thalassemia or glucose-6-phosphate dehydrogenase deficiency is rare. In this case report, we present a case of acute non-immune hemolytic anemia in enteric fever caused by nalidixic acid-resistant Salmonella enterica serotype Typhi.

2.
Front Oncol ; 12: 879607, 2022.
Article in English | MEDLINE | ID: mdl-35814415

ABSTRACT

Proper analysis of high-dimensional human genomic data is necessary to increase human knowledge about fundamental biological questions such as disease associations and drug sensitivity. However, such data contain sensitive private information about individuals and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw genomic datasets cannot be publicly published or shared with researchers. The recent success of deep learning (DL) in diverse problems proved its suitability for analyzing the high volume of high-dimensional genomic data. Still, DL-based models leak information about the training samples. To overcome this challenge, we can incorporate differential privacy mechanisms into the DL analysis framework as differential privacy can protect individuals' privacy. We proposed a differential privacy based DL framework to solve two biological problems: breast cancer status (BCS) and cancer type (CT) classification, and drug sensitivity prediction. To predict BCS and CT using genomic data, we built a differential private (DP) deep autoencoder (dpAE) using private gene expression datasets that performs low-dimensional data representation learning. We used dpAE features to build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We extracted GDSC's dpAE features to build our DP drug sensitivity prediction model for 265 drugs. Evaluation of our proposed DP framework shows that it achieves improved prediction performance in predicting BCS, CT, and drug sensitivity than the previously published DP work.

3.
J Cheminform ; 14(1): 12, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279211

ABSTRACT

MOTIVATION: Chemical-genetic interaction profiling is a genetic approach that quantifies the susceptibility of a set of mutants depleted in specific gene product(s) to a set of chemical compounds. With the recent advances in artificial intelligence, chemical-genetic interaction profiles (CGIPs) can be leveraged to predict mechanism of action of compounds. This can be achieved by using machine learning, where the data from a CGIP is fed into the machine learning platform along with the chemical descriptors to develop a chemogenetically trained model. As small molecules can be considered non-structural data, graph convolutional neural networks, which can learn from the chemical structures directly, can be used to successfully predict molecular properties. Clustering analysis, on the other hand, is a critical approach to get insights into the underlying biological relationships between the gene products in the high-dimensional chemical-genetic data. METHODS AND RESULTS: In this study, we proposed a comprehensive framework based on the large-scale chemical-genetics dataset built in Mycobacterium tuberculosis for predicting CGIPs using graph-based deep learning models. Our approach is structured into three parts. First, by matching M. tuberculosis genes with homologous genes in Escherichia coli (E. coli) according to their gene products, we grouped the genes into clusters with distinct biological functions. Second, we employed a directed message passing neural network to predict growth inhibition against M. tuberculosis gene clusters using a collection of 50,000 chemicals with the profile. We compared the performance of different baseline models and implemented multi-label tasks in binary classification frameworks. Lastly, we applied the trained model to an externally curated drug set that had experimental results against M. tuberculosis genes to examine the effectiveness of our method. Overall, we demonstrate that our approach effectively created M. tuberculosis gene clusters, and the trained classifier is able to predict activity against essential M. tuberculosis targets with high accuracy. CONCLUSION: This work provides an analytical framework for modeling large-scale chemical-genetic datasets for predicting CGIPs and generating hypothesis about mechanism of action of novel drugs. In addition, this work highlights the importance of graph-based deep neural networks in drug discovery.

4.
Front Immunol ; 12: 729681, 2021.
Article in English | MEDLINE | ID: mdl-34867950

ABSTRACT

Objectives: Patients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically important features of stable RA, and couple broad-based proteomics with machine learning to predict future flare. Methods: We studied baseline serum samples from a cohort of stable RA patients (RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins using the SOMAscan platform. Unsupervised hierarchical clustering and supervised classification were applied to identify proteomic-driven clusters and model biomarkers that were associated with future disease flare after 12 months of follow-up and RA medication withdrawal. Network analysis was used to define pathways that were enriched in proteomic datasets. Results: We defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses and complement activation. Clustering did not clearly predict future risk of flare, however an XGboost machine learning algorithm classified patients who relapsed with an AUC (area under the receiver operating characteristic curve) of 0.80 using only baseline serum proteomics. Conclusions: The serum proteome provides a rich dataset to understand stable RA and its clinical heterogeneity. Combining proteomics and machine learning may enable prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/classification , Blood Proteins/analysis , Adult , Aged , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biomarkers/blood , Female , Humans , Male , Middle Aged , Proteomics , Recurrence , Remission Induction
5.
Life (Basel) ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34832991

ABSTRACT

The discovery of new drugs is required in the time of global aging and increasing populations. Traditional drug development strategies are expensive, time-consuming, and have high risks. Thus, drug repurposing, which treats new/other diseases using existing drugs, has become a very admired tactic. It can also be referred to as the re-investigation of the existing drugs that failed to indicate the usefulness for the new diseases. Previously published literature used maximum flow approaches to identify new drug targets for drug-resistant infectious diseases but not for drug repurposing. Therefore, we are proposing a maximum flow-based protein-protein interactions (PPIs) network analysis approach to identify new drug targets (proteins) from the targets of the FDA (Food and Drug Administration) drugs and their associated drugs for chronic diseases (such as breast cancer, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD)) treatment. Experimental results showed that we have successfully turned the drug repurposing into a maximum flow problem. Our top candidates of drug repurposing, Guanidine, Dasatinib, and Phenethyl Isothiocyanate for breast cancer, IBD, and COPD were experimentally validated by other independent research as the potential candidate drugs for these diseases, respectively. This shows the usefulness of the proposed maximum flow approach for drug repurposing.

6.
BMC Proc ; 12(Suppl 9): 21, 2018.
Article in English | MEDLINE | ID: mdl-30263040

ABSTRACT

BACKGROUND: Epigenetic modification has an effect on gene expression under the environmental alteration, but it does not change corresponding genome sequence. DNA methylation (DNAm) is one of the important epigenetic mechanisms. DNAm variations could be used as epigenetic markers to predict and account for the change of many human phenotypic traits, such as cancer, diabetes, and high blood pressure. In this study, we built deep neural network (DNN) regression models to account for interindividual variation in triglyceride concentrations measured at different visits of peripheral blood samples using epigenome-wide DNAm profiles. RESULTS: We used epigenome-wide DNAm profiles of before and after medication interventions (called pretreatment and posttreatment, respectively) to predict triglyceride concentrations for peripheral blood draws at visit 2 (using pretreatment data) and at visit 4 (using both pretreatment and posttreatment data). Our experimental results showed that DNN models can predict triglyceride concentrations for blood draws at visit 4 using pretreatment and posttreatment DNAm data more accurately than for blood draws at visit 2 using pretreatment DNAm data. Furthermore, we got the best prediction results when we used pretreatment DNAm data to predict triglyceride concentrations for blood draws at visit 4, which suggests a long-term epigenetic effect on phenotypic traits. We compared the prediction performances of our proposed DNN models with that of support vector machine (SVM). This comparison showed that our DNN models achieved better prediction performance than did SVM. CONCLUSIONS: We demonstrated the superiority of our proposed DNN models over the SVM model for predicting triglyceride concentrations. This study also suggests that the DNN approach has advantages over other traditional machine-learning methods to model high-dimensional epigenome-wide DNAm data and other genomic data.

SELECTION OF CITATIONS
SEARCH DETAIL
...