Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 10(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893844

ABSTRACT

Globally, both natural water bodies and aquaculture systems are being severely contaminated by heavy metals due to rising anthropogenic activities. Fish living in aquatic environments can easily accumulate metals in their bodies, which can then be transferred to consumers and put them at risk. In this study, metal concentrations (Pb, Cd, Cr, As, Mn, Cu, Zn) in different organs (gill, liver, and muscle) of farmed and wild Barramundi (Lates calcarifer) fish from the northern Bay of Bengal were evaluated to quantify and compare contamination levels and related human health risk. Heavy metal concentrations were higher in liver tissues of farmed Barramundi than in wild Barramundi, with the following relative mean values in the liver, gills, and muscle: Zn > Cu > Pb > Mn > Cd > Cr > As; Zn > Cr > Cu > Pb > Mn > Cd > As; Zn > Pb > Cu > Cr > Mn > Cd > As; Zn > Pb > Cu > Cr > Mn > Cd > As; and Zn > Pb > Cu > Cr > Mn > Cd > As, respectively. The differences in heavy metal accumulation observed between farmed and wild fish were probably related to the differences in their environmental conditions and dietary element concentrations. However, ANOVA indicated that the variation of metals in wild and Barramundi was not statically significant. Pb concentrations in the liver tissue of farmed Barramundi exceeded the national and international threshold limits, whereas concentrations of other metals were within the limit. Among the examined organs in both fish species (wild and farmed), muscle had the lowest concentration compared to others, and liver was the target organ for Pb, Cu, and Cd accumulations. Metals such as Zn and Mn exhibited higher concentration in the gills. However, all the studied heavy metals were below the maximum permissible limits of national and international standards, but the mean concentrations of Pb and Cd values in the liver of farmed Barramundi exceeded all international and national guidelines. Based on the contamination factors (CF) and pollution indices (PLI and MPI), the degree of contamination in the fish organs was as follows: gills > liver > muscle. The major accumulation tissues for both farmed and wild fish were found to be the gills (MPI = 0.970) and the liver (MPI = 0.692). Based on the estimated daily intake (EDI), the fish samples examined in this study are safe for human consumption as within the recommended daily allowance (RDA) range established by various authorities. According to the Target Hazard Quotient (THQ) and Carcinogenic Risk (CR) calculations, though the Barramundi fishes depicted no potential hazard to humans, farmed fish posed a higher health risk than wild fish.

2.
PeerJ ; 6: e4654, 2018.
Article in English | MEDLINE | ID: mdl-29736331

ABSTRACT

Freshwater fishes often exhibit high genetic population structure due to the prevalence of dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes tends to be weaker and driven by natal homing behaviour and/or isolation by distance. The Australian smelt (Retropinnidae: Retropinna semoni) is a native fish with a broad distribution spanning inland and coastal drainages of south-eastern Australia. Previous studies have demonstrated variability in population genetic structure and movement behaviour (potamodromy, facultative diadromy, estuarine residence) across the southern part of its geographic range. Some of this variability may be explained by the existence of multiple cryptic species. Here, we examined genetic structure of populations towards the northern extent of the species' distribution, using ten microsatellite loci and sequences of the mitochondrial cyt b gene. We tested the hypothesis that genetic connectivity among rivers should be low due to a lack of dispersal via the marine environment, but high within rivers due to dispersal. We investigated populations corresponding with two putative cryptic species, SEQ-North (SEQ-N), and SEQ-South (SEQ-S) lineages occurring in south east Queensland drainages. These two groups formed monophyletic clades in the mtDNA gene tree and among river phylogeographic structure was also evident within each clade. In agreement with our hypothesis, highly significant overall FST values suggested that both groups exhibit very low dispersal among rivers (SEQ-S FST = 0.13; SEQ-N FST= 0.27). Microsatellite data indicated that connectivity among sites within rivers was also limited, suggesting dispersal may not homogenise populations at the within-river scale. Northern groups in the Australian smelt cryptic species complex exhibit comparatively higher among-river population structure and smaller geographic ranges than southern groups. These properties make northern Australian smelt populations potentially susceptible to future conservation threats, and we define eight genetically distinct management units along south east Queensland to guide future conservation management. The present findings at least can assist managers to plan for effective conservation and management of different fish species along coastal drainages of south east Queensland, Australia.

3.
Mitochondrial DNA B Resour ; 1(1): 615-616, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-33473570

ABSTRACT

Complete mitochondrial genome sequences were determined for two lineages ("CEQ" and "SEQ") of the Australian smelt, Retropinna semoni. Both mitogenomes contain the typical vertebrate arrangement of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and control region. A conventional start codon for ND2 was not present in either lineage; instead CTG (Leucine) was present at this position. These sequences will be a useful resource for evolutionary studies of a significant species complex in the Australian freshwater fish fauna.

SELECTION OF CITATIONS
SEARCH DETAIL
...