Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 22521, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110488

ABSTRACT

In the modern world, wheat, a vital global cereal and the second most consumed, is vulnerable to climate change impacts. These include erratic rainfall and extreme temperatures, endangering global food security. Research on hydrogen-rich water (HRW) has gained momentum in plant and agricultural sciences due to its diverse functions. This study examined the effects of different HRW treatment durations on wheat, revealing that the 4-h treatment had the highest germination rate, enhancing potential, vigor, and germination indexes. This treatment also boosted relative water content, root and shoot weight, and average lengths. Moreover, the 4-h HRW treatment resulted in the highest chlorophyll and soluble protein concentrations in seeds while reducing cell death. The 4-h and 5-h HRW treatments significantly increased H2O2 levels, with the highest NO detected in both root and shoot after 4-h HRW exposure. Additionally, HRW-treated seeds exhibited increased Zn and Fe concentrations, along with antioxidant enzyme activities (CAT, SOD, APX) in roots and shoots. These findings suggest that HRW treatment could enhance wheat seed germination, growth, and nutrient absorption, thereby increasing agricultural productivity. Molecular analysis indicated significant upregulation of the Dreb1 gene with a 4-h HRW treatment. Thus, it shows promise in addressing climate change effects on wheat production. Therefore, HRW treatment could be a hopeful strategy for enhancing wheat plant drought tolerance, requiring further investigation (field experiments) to validate its impact on plant growth and drought stress mitigation.


Subject(s)
Resilience, Psychological , Seedlings , Triticum , Droughts , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Germination , Water/metabolism , Hydrogen/metabolism
2.
Mol Microbiol ; 120(5): 702-722, 2023 11.
Article in English | MEDLINE | ID: mdl-37748926

ABSTRACT

Lipid droplets (LDs) are storage organelles for neutral lipids which are critical for lipid homeostasis. Current knowledge of fungal LD biogenesis is largely limited to budding yeast, while LD regulation in multinucleated filamentous fungi which exhibit considerable metabolic activity remains unexplored. In this study, 19 LD-associated proteins were identified in the multinucleated species Aspergillus oryzae using a colocalization screening of a previously established enhanced green fluorescent protein (EGFP) fusion library. Functional screening identified 12 lipid droplet-regulating (LDR) proteins whose loss of function resulted in irregular LD biogenesis, particularly in terms of LD number and size. Bioinformatics analysis, targeted mutagenesis, and microscopy revealed four LDR proteins that localize to LD via the putative amphipathic helices (AHs). Further analysis revealed that LdrA with an Opi1 domain is essential for cytoplasmic and nuclear LD biogenesis involving a novel AH. Phylogenetic analysis demonstrated that the patterns of gene evolution were predominantly based on gene duplication. Our study identified a set of novel proteins involved in the regulation of LD biogenesis, providing unique molecular and evolutionary insights into fungal lipid storage.


Subject(s)
Lipid Droplets , Proteins , Lipid Droplets/metabolism , Phylogeny , Proteins/metabolism , Lipid Metabolism/genetics , Fungi/metabolism , Lipids
4.
Sci Rep ; 12(1): 19137, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352019

ABSTRACT

The plant growth-boosting biofilm-forming bacteria Bacillus pseudomycoides is able to promote growth and drought stress tolerance in wheat by suppressing the MYB gene, which synthesizes Myb protein (TaMpc1-D4) through secreted volatile compounds. In the present study, Triticum aestivum seeds were inoculated with five distinct bacterial strains. The growth, germination rate, root-shoot length, RWC, and chlorophyll content of seedlings were investigated. Furthermore, the levels of soluble sugars, proteins, H2O2, NO, cell death, and antioxidant enzymes (CAT, SOD, POD, and APX) were observed throughout the growth stage. All of the results showed that B. pseudomycoides had a substantially higher ability to form biofilm and promote these traits than the other strains. In terms of molecular gene expression, B. pseudomycoides inoculation strongly expressed the Dreb1 gene by silencing the expression of MYB gene through secreted volatile compounds. For identifying the specific volatile compound that silenced the MYB gene, molecular docking with Myb protein was performed. Out of 45 volatile compounds found, 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione and 3,5-ditert-butylphenol had a binding free energy of - 6.2 and - 6.5, Kcal/mol, respectively, which predicted that these compounds could suppress this protein's expression. In molecular dynamics simulations, the RMSD, SASA, Rg, RMSF, and hydrogen bonding values found assured the docked complexes' binding stability. These findings suggest that these targeted compounds may be suppressing Myb protein expression as well as the expression of Dreb1 and other drought response genes in wheat. More research (field trial) into plant growth and drought stress is needed to support the findings of this study.


Subject(s)
Droughts , Triticum , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Molecular Docking Simulation
5.
PLoS One ; 17(8): e0273341, 2022.
Article in English | MEDLINE | ID: mdl-35998194

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic, caused by the coronavirus 2 (SARS-CoV-2), involves severe acute respiratory syndrome and poses unprecedented challenges to global health. Structure-based drug design techniques have been developed targeting the main protease of the SARS-CoV-2, responsible for viral replication and transcription, to rapidly identify effective inhibitors and therapeutic targets. Herein, we constructed a phytochemical dataset of 1154 compounds using deep literature mining and explored their potential to bind with and inhibit the main protease of SARS-CoV-2. The three most effective phytochemicals Cosmosiine, Pelargonidin-3-O-glucoside, and Cleomiscosin A had binding energies of -8.4, -8.4, and -8.2 kcal/mol, respectively, in the docking analysis. These molecules could bind to Gln189, Glu166, Cys145, His41, and Met165 residues on the active site of the targeted protein, leading to specific inhibition. The pharmacological characteristics and toxicity of these compounds, examined using absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses, revealed no carcinogenicity or toxicity. Furthermore, the complexes were simulated with molecular dynamics for 100 ns to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen profiles from the simulation trajectories. Our analysis validated the rigidity of the docked protein-ligand. Taken together, our computational study findings might help develop potential drugs to combat the main protease of the SARS-CoV-2 and help alleviate the severity of the pandemic.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Coronavirus 3C Proteases , Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry
6.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163539

ABSTRACT

Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection. However, the development of drug-resistant HBV strains due to viral genomic mutations in genes encoding the polymerase protein is a major obstacle to HBV treatment. In addition, adverse effects can occur in patients treated with nucleos(t)ide analogs. Thus, alternative anti-HBV drugs of plant origin are being investigated as they exhibit excellent safety profiles and have few or no side effects. In this study, phytomedicines/phytochemicals exerting significant inhibitory effects on HBV by interfering with its replication were reviewed based on different compound groups. In addition, the chemical structures of these compounds were developed. This will facilitate their commercial synthesis and further investigation of the molecular mechanisms underlying their effects. The limitations of compounds previously screened for their anti-HBV effect, as well as future approaches to anti-HBV research, have also been discussed.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/physiology , Hepatitis B/drug therapy , Phytochemicals/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Drug Development , Drug Resistance, Viral/drug effects , Hepatitis B/virology , Hepatitis B virus/growth & development , Humans , Molecular Structure , Mutation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Virus Replication/drug effects
7.
Article in English | MEDLINE | ID: mdl-34770105

ABSTRACT

Atopic dermatitis (AD) is the foremost non-fatal skin-related disease that affects all age groups. Despite the growing prevalence of AD in low- and middle-income countries, its physiological consequences remain overlooked in countries like Bangladesh. Therefore, we aim to assess and characterize the influence of AD on the health-related quality of life (HRQoL) in Bangladeshi patients. A cross-sectional study comprising 184 eligible adults (83 men and 101 women; mean age, 33.46 ± 15.44 years) was conducted at the dermatology outpatient department of Shaheed Suhrawardy Medical College Hospital (a tertiary hospital in Dhaka, Bangladesh). AD was determined using the UK Working Party criteria. A structured questionnaire, Eczema Area and Severity Index (EASI), and Dermatology Life Quality Index (DLQI) were administered to obtain information on patient characteristics, AD severity, and HRQoL. The mean DLQI score for the entire sample was 11.29 ± 5.27 (range, 1-26), and 51.60% reported the disease greatly affected their lives. Bivariate analysis revealed significant differences in self-rated health measures of DLQI scores in terms of self-reported AD severity, overall health, and the EASI. In multivariable regression models adjusted for patient characteristics, the self-perceived severe AD group reported significantly higher DLQI scores (coefficient = 2.72; 95% confidence interval (CI) = 0.38-5.05; p = 0.022) than the mild group. Concurrently, we observed a substantial increase in the DLQI scores among patients with moderate and severe EASI scores (coefficient = 1.96, 95% CI = 0.08-3.92, p < 0.05 and coefficient = 4.35, 95% CI = 1.98-6.72, p < 0.001, respectively) than in those with mild EASI scores, suggesting that HRQoL was markedly influenced by greater AD severity. These findings highlight the need for a more patient-centric approach to the management of AD in order to alleviate patient suffering and, thereby, improve HRQoL.


Subject(s)
Dermatitis, Atopic , Eczema , Adolescent , Adult , Bangladesh/epidemiology , Cross-Sectional Studies , Dermatitis, Atopic/epidemiology , Female , Humans , Male , Middle Aged , Quality of Life , Severity of Illness Index , Tertiary Care Centers , Young Adult
8.
Front Microbiol ; 12: 735305, 2021.
Article in English | MEDLINE | ID: mdl-34603265

ABSTRACT

The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively. However, the subtypes H5N1/H9N2 infecting humans and H3N2/H1N1 infecting avian species have also been identified. Among the avian species, the maximum number of subtypes (27) have been identified in ducks. A 3.56% of the isolates showed neuraminidase inhibitor (NAI) resistance with a prevalence of 8.50, 1.33, and 2.67% in avian species, humans, and the environment, respectively, the following mutations were detected: V116A, I117V, D198N, I223R, S247N, H275Y, and N295S. Prevalence of adamantane-resistant IAVs was 100, 50, and 30.54% in humans, the environment, and avian species, respectively, the subtypes H3N2, H1N1, H9N2, and H5N2 were highly prevalent, with the subtype H5N1 showing a comparatively lower prevalence. Important PB2 mutations such D9N, K526R, A588V, A588I, G590S, Q591R, E627K, K702R, and S714R were identified. A wide range of IAV subtypes have been identified in Bangladesh with a diversified genetic variation in the NA, M2, and PB2 proteins providing drug resistance and enhanced pathogenicity. This study provides a detailed analysis of the subtypes, and the host range of the IAV isolates and the genetic variations related to their proteins, which may aid in the prevention, treatment, and control of IAV infections in Bangladesh, and would serve as a basis for future investigations.

9.
Hum Vaccin Immunother ; 17(10): 3288-3296, 2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34283001

ABSTRACT

The development of safe and effective vaccines has been an overriding priority for controlling the 2019-coronavirus disease (COVID-19) pandemic. From the onset, COVID-19 has caused high mortality and economic losses and yet has also offered an opportunity to advance novel therapeutics such as DNA and mRNA vaccines. Although it is hoped that the swift acceptance of such vaccines will prevent loss of life, rejuvenate economies and restore normal life, there could also be significant pitfalls. This perspective provides an overview of future directions and challenges in advancing promising vaccine platforms to widespread therapeutic use.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2
10.
Front Microbiol ; 12: 780887, 2021.
Article in English | MEDLINE | ID: mdl-35222296

ABSTRACT

Human immunodeficiency virus, hepatitis B virus, and hepatitis C virus are three blood-borne viruses that can cause major global health issues by increasing severe morbidity. There is a high risk of coinfection with these viruses in individuals because of their same transmission routes through blood using shared needles, syringes, other injection equipment, sexual transmission, or even vertical transmission. Coinfection can cause various liver-related illnesses, non-hepatic organ dysfunction, followed by death compared to any of these single infections. The treatment of coinfected patients is complicated due to the side effects of antiviral medication, resulting in drug resistance, hepatotoxicity, and a lack of required responses. On the other hand, coinfected individuals must be treated with multiple drugs simultaneously, such as for HIV either along with HBV or HCV and HBV and HCV. Therefore, diagnosing, treating, and controlling dual infections with HIV, HBV, or HCV is complicated and needs further investigation. This review focuses on the current prevalence, risk factors, and pathogenesis of dual infections with HIV, HBV, and HCV. We also briefly overviewed the diagnosis and treatment of coinfections of these three blood-borne viruses.

11.
J Integr Plant Biol ; 62(9): 1352-1371, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31961050

ABSTRACT

Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue-light-dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue-light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop-and-go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma-membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2- and photosynthesis-dependent signals. The present study might add novel regulatory mechanism for light-dependent plant organelle interactions.


Subject(s)
Arabidopsis/metabolism , Mesophyll Cells/metabolism , Mitochondria/metabolism , Photosynthesis/physiology , Phototropins/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Chloroplasts/physiology , Mesophyll Cells/physiology , Microscopy, Fluorescence , Mitochondria/physiology , Photosynthesis/genetics
12.
Int Rev Cell Mol Biol ; 286: 181-222, 2011.
Article in English | MEDLINE | ID: mdl-21199782

ABSTRACT

In plant cells, different kinds of single- and double-membrane-bounded cell organelles exhibit dynamic changes in their morphology, motility, and distribution patterns. The dynamic behavior of organelles plays crucial roles intimately associated with plant development and/or adaptive responses to environmental fluctuations. Recent progress in techniques for the visualization of cell organelles and cytoskeletal components has provided useful systems to dissect these complex processes, and revealed a number of striking features of plant organelle dynamics. This chapter summarizes recent findings on dynamic behavior of nuclei, mitochondria, and plastids in plant cells, focusing on imaging analyses and regulatory proteins.


Subject(s)
Cell Membrane/metabolism , Organelles/metabolism , Plants/metabolism , Cell Nucleus/metabolism , Mitochondria/metabolism , Plastids/metabolism , Protein Binding
14.
Plant Cell Physiol ; 50(6): 1032-40, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19380350

ABSTRACT

Mitochondria, the power house of the cell, are one of the most dynamic cell organelles. Although there are several reports on actin- or microtubule-dependent movement of mitochondria in plant cells, intracellular positioning and motility of mitochondria under different light conditions remain open questions. Mitochondria were visualized in living Arabidopsis thaliana leaf cells using green fluorescent protein fused to a mitochondrion-targeting signal. In darkness, mitochondria were distributed randomly in palisade cells. In contrast, mitochondria accumulated along the periclinal walls, similar to the accumulation response of chloroplasts, when treated with weak blue light (470 nm, 4 micromol m(-2) s(-1)). Under strong blue light (100 micromol m(-2) s(-1)), mitochondria occupied the anticlinal positions similar to the avoidance response of chloroplasts and nuclei. While strong red light (660 nm, 100 micromol m(-2) s(-1)) induced the accumulation of mitochondria along the inner periclinal walls, green light exhibited little effect on the distribution of mitochondria. In addition, the mode of movement of individual mitochondria along the outer periclinal walls under different light conditions was precisely analyzed by time-lapse fluorescence microscopy. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts with a time period of blue light illumination clearly demonstrated the accumulation response of mitochondria. Light-induced co-localization of mitochondria with chloroplasts strongly suggested their mutual metabolic interactions. This is the first characterization of the light-dependent redistribution of mitochondria in plant cells.


Subject(s)
Arabidopsis/radiation effects , Light , Mitochondria/radiation effects , Plant Leaves/ultrastructure , Arabidopsis/cytology , Green Fluorescent Proteins/chemistry , Microscopy, Fluorescence , Mitochondria/metabolism , Plant Leaves/radiation effects , Plants, Genetically Modified/cytology , Plants, Genetically Modified/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...