Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 9245, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915310

ABSTRACT

Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer's fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.


Subject(s)
Adaptation, Physiological/genetics , Oryza/genetics , Breeding/methods , Droughts , Floods , Genes, Plant/genetics , Quantitative Trait Loci/genetics
2.
C R Biol ; 341(2): 85-96, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29398646

ABSTRACT

The study aims at identifying some submergence-tolerant rice genotypes through morphological and molecular characterization and their genetic variability analysis. Ten rice genotypes including two submergence-tolerant checks, two susceptible varieties and six advanced lines were evaluated for submergence tolerance in the laboratory and in the field during January-December 2015. The experiment was conducted in the field following randomized complete block design in a two-factor arrangement using five replications. Ten characters, viz. days to flowering, plant height, tiller number plant-1, effective tiller plant-1, and yield plant-1 etc. were studied for four treatments. A significant genotype×environment interaction was observed for all traits studied in this experiment. The yield was reduced for all genotypes at a different level of submergence stress compared to control. Binadhan-11, Binadhan-12, RC 249 and RC 251 showed tolerance, whereas RC 192, RC 193 and RC 225 showed moderate tolerance in submerged condition. The phenotypic coefficient of variance (PCV) was higher than the genotypic coefficient of variance (GCV) in all the studies traits. High heritability (75-97%) was found for all traits. High heritability along with high genetic advance was found for days to flowering (45.55) and plant height (40.05). Molecular characterization of the used genotypes was done with three SSR markers viz. RM 24, and submergence specific SC3 and SUB1. SC3 was found reliable for detection of submergence tolerant genotypes due to the highest gene diversity (0.840) compared to others. The banding pattern of the submergence specific markers SC3 and SUB1 identified in Binadhan-11, Binadhan-12, RC 192, RC 193, RC 225, RC 227, RC 249, and RC 251, which possess the SUB1 gene. Finally, clustering also separates the tolerant genotypes from the susceptible by dividing them into different clusters. The identified genotypes might be useful for the breeding programme for the development of submergence tolerant as well as resistant rice variety in Bangladesh.


Subject(s)
Genes, Plant , Genotype , Oryza/genetics , Alleles , Bangladesh , Phenotype , Plant Breeding
3.
Pak J Biol Sci ; 10(24): 4449-54, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-19093510

ABSTRACT

Eleven genotypes, including the salt tolerant cultivar Pokkali as check, were used to evaluate salinity tolerance phenotypically and genotypically. Three selected SSR primers viz., RM7075, RM336 and RM253 were used to evaluate rice genotypes for salt tolerance. Two setups were maintained for this study viz., the seedling and reproductive stages. Phenotyping at the seedling stage was done in hydroponic system using salinized (EC 12 dS m(-1)) nutrient solution and at the reproductive stage using salinized tap water (EC 6 dS m(-1)). IRRI standard protocol was followed to evaluate salinity tolerance in rice. The genotypes having similar banding pattern with Pokkali were considered as tolerant. Phenotypically, three genotypes Pokkali, THDB and TNDB-100 and five genotypes RD-2586, TNDB-100, Dhol Kochuri, PNR-519 and Pokkali were identified as salt tolerant at the seedling and reproductive stages, respectively. These genotypes were also identified as salt tolerant genotypically (with markers). Through phenotypic and genotypic study, five genotypes viz., Pokkali, Dhol Kochuri, RD-2586, TNDB-100 and PNR-519 were identified as salt tolerant. Therefore, these microsatellite markers used in this study could be efficiently used for identification of salt tolerant rice varieties in marker-assisted breeding and quantitative trait loci analysis.


Subject(s)
Oryza/growth & development , Sodium Chloride/pharmacology , Drug Tolerance , Edible Grain/drug effects , Edible Grain/genetics , Genetic Markers , Genotype , Oryza/drug effects , Oryza/genetics , Phenotype , Polymorphism, Genetic , Reproduction/drug effects , Reproduction/physiology , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seeds/drug effects , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...