Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 344: 140373, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806324

ABSTRACT

The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 µg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 µg/L for both ibuprofen and irgarol and 500 µg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 µg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 µg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Ibuprofen/toxicity , Ecosystem , Triazines/analysis , Larva , Water Pollutants, Chemical/analysis , Embryo, Nonmammalian
2.
Toxics ; 8(4)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322739

ABSTRACT

The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems.

3.
Sci Total Environ ; 653: 504-511, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30414580

ABSTRACT

Aquatic ecosystems receive run-off and discharges from different sources that lead to the accumulation of contaminants such as copper. Besides producing lethal and sub-lethal effects, copper has shown to be aversive to zebrafish (Danio rerio) by triggering avoidance response. The primary aim of the present study was to evaluate how a copper gradient could affect the spatial distribution of D. rerio by triggering avoidance, preventing recolonization and isolating populations. Secondly, to what extent the food availability in a previously avoided environment could make it a less aversive environment was assessed. A non-forced, multi-compartmented exposure system with a copper gradient (0-300 µg·L-1), through which fish could move, was used for the avoidance and recolonization assays. To test the effect of copper on population isolation, two uncontaminated connected zones were separated by a chemical barrier with a copper concentration of 90 µg·L-1 (a concentration producing an avoidance of 50% - AC50). Zebrafish avoided copper and the 2 h-AC50 was 90.8 µg·L-1. The recolonization was in accordance with avoidance and the relationship ACx/RC100-x (RC: recolonization concentration) was around 2.5. When food was provided in the highest copper concentration, the recolonization pattern was altered, although the distribution of the fish was not statistically different from the scenario without food. The chemical barrier formed by copper (90 µg·L-1) impaired the migratory potential of the fish population by 41.3%; when food was provided in the last compartment, no statistically significant trend of fish moving towards that concentration was observed. Copper might act as an environmental disruptor by triggering spatial avoidance, preventing recolonization and isolating populations in zebrafish. The present study allows simultaneously including three ecological concepts to ecotoxicological studies that have received little attention: habitat selection, recolonization and habitat chemical fragmentation.


Subject(s)
Avoidance Learning/drug effects , Copper/adverse effects , Movement/drug effects , Spatial Behavior/drug effects , Water Pollutants, Chemical/adverse effects , Zebrafish/physiology , Animals , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...