Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38905082

ABSTRACT

Drug-drug interaction (DDI) indicates where a particular drug's desired course of action is modified when taken with other drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms the baselines significantly.

2.
Front Big Data ; 3: 608043, 2020.
Article in English | MEDLINE | ID: mdl-33693427

ABSTRACT

Network embedding that encodes structural information of graphs into a low-dimensional vector space has been proven to be essential for network analysis applications, including node classification and community detection. Although recent methods show promising performance for various applications, graph embedding still has some challenges; either the huge size of graphs may hinder a direct application of the existing network embedding method to them, or they suffer compromises in accuracy from locality and noise. In this paper, we propose a novel Network Embedding method, NECL, to generate embedding more efficiently or effectively. Our goal is to answer the following two questions: 1) Does the network Compression significantly boost Learning? 2) Does network compression improve the quality of the representation? For these goals, first, we propose a novel graph compression method based on the neighborhood similarity that compresses the input graph to a smaller graph with incorporating local proximity of its vertices into super-nodes; second, we employ the compressed graph for network embedding instead of the original large graph to bring down the embedding cost and also to capture the global structure of the original graph; third, we refine the embeddings from the compressed graph to the original graph. NECL is a general meta-strategy that improves the efficiency and effectiveness of many state-of-the-art graph embedding algorithms based on node proximity, including DeepWalk, Node2vec, and LINE. Extensive experiments validate the efficiency and effectiveness of our method, which decreases embedding time and improves classification accuracy as evaluated on single and multi-label classification tasks with large real-world graphs.

SELECTION OF CITATIONS
SEARCH DETAIL
...