Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tomography ; 9(1): 315-327, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36828377

ABSTRACT

Patients with degenerative cervical myelopathy (DCM) undergo adaptive supraspinal changes. However, it remains unknown how subcortical white matter changes reflect the gray matter loss. The current study investigated the interrelationship between gray matter and subcortical white matter alterations in DCM patients. Cortical thickness of gray matter, as well as the intra-cellular volume fraction (ICVF) of subcortical whiter matter, were assessed in a cohort of 44 patients and 17 healthy controls (HCs). The results demonstrated that cortical thinning of sensorimotor and pain related regions is associated with more severe DCM symptoms. ICVF values of subcortical white matter underlying the identified regions were significantly lower in study patients than in HCs. The left precentral gyrus (r = 0.5715, p < 0.0001), the left supramarginal gyrus (r = 0.3847, p = 0.0099), the left postcentral gyrus (r = 0.5195, p = 0.0003), the right superior frontal gyrus (r = 0.3266, p = 0.0305), and the right caudal (r = 0.4749, p = 0.0011) and rostral anterior cingulate (r = 0.3927, p = 0.0084) demonstrated positive correlations between ICVF and cortical thickness in study patients, but no significant correlations between ICVF and cortical thickness were observed in HCs. Results from the current study suggest that DCM may cause widespread gray matter alterations and underlying subcortical neurite loss, which may serve as potential imaging biomarkers reflecting the pathology of DCM.


Subject(s)
Spinal Cord Diseases , White Matter , Humans , Magnetic Resonance Imaging/methods , Gray Matter/pathology , Spinal Cord Diseases/pathology
2.
Tomography ; 8(3): 1437-1452, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35736864

ABSTRACT

This pilot study investigates structural alterations and their relationships with cognitive function in survivors of diffuse gliomas. Twenty-four survivors of diffuse gliomas (mean age 44.5 ± 11.5), from whom high-resolution T1-weighted images, neuropsychological tests, and self-report questionnaires were obtained, were analyzed. Patients were grouped by degree of cognitive impairment, and interregional correlations of cortical thickness were computed to generate morphometric correlation networks (MCNs). The results show that the cortical thickness of the right insula (R2 = 0.3025, p = 0.0054) was negatively associated with time since the last treatment, and the cortical thickness of the left superior temporal gyrus (R2 = 0.2839, p = 0.0107) was positively associated with cognitive performance. Multiple cortical regions in the default mode, salience, and language networks were identified as predominant nodes in the MCNs of survivors of diffuse gliomas. Compared to cognitively impaired patients, cognitively non-impaired patients tended to have higher network stability in network nodes removal analysis, especially when the fraction of removed nodes (among 66 nodes in total) exceeded 55%. These findings suggest that structural networks are altered in survivors of diffuse gliomas and that their cortical structures may also be adapting to support cognitive function during survivorship.


Subject(s)
Glioma , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Cognition , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Pilot Projects , Survivors
3.
J Neurosurg Spine ; : 1-9, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116506

ABSTRACT

OBJECTIVE: The aim of this study was to investigate cerebral reorganization, both structurally and functionally, occurring in patients with degenerative cervical myelopathy (DCM) after surgical decompression. METHODS: In the current observational study of 19 patients, high-resolution T1-weighted structural MRI and resting-state functional MRI scans were obtained pre- and postoperatively in patients with DCM and healthy controls (HCs). The resting-state functional MRI data were utilized to perform region-of-interest (ROI)-to-ROI and ROI-to-voxel functional connectivity (FC) analysis and were similarly compared between and within cohorts. Macroscopic structural plasticity was evaluated by assessing for changes in cortical thickness within the DCM cohort after decompression surgery. RESULTS: Prior to surgery, FC patterns were significantly different between DCM patients and HCs in cerebral areas responsible for postural control, motor regulation, and perception and integration of sensory information. Significantly stronger FC between the cerebellum and frontal lobes was identified in DCM patients postoperatively compared with DCM patients preoperatively. Additionally, increased FC between the cerebellum and primary sensorimotor areas was found to be positively associated with neurological improvement in patients with DCM. No macroscopic structural changes were observed in the DCM patients after surgery. CONCLUSIONS: These results support the authors' hypothesis that functional changes within the brain are associated with effective postoperative recovery, particularly in regions associated with motor regulation and with perception and integration of sensory information. In particular, increased FC between the cerebellum and the primary sensorimotor after surgery appears to be associated with neurological improvement. Macroscopic morphological changes may be too subtle to be detected within 3 months after surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...