Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Genet Eng Biotechnol ; 22(1): 100353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494267

ABSTRACT

BACKGROUND: Xanthomonas oryzae pv. oryzae is a plant pathogen responsible for causing one of the most severe bacterial diseases in rice, known as bacterial leaf blight that poses a major threat to global rice production. Even though several experimental compounds and chemical agents have been tested against X. oryzae pv. oryzae, still no approved drug is available. In this study, a subtractive genomic approach was used to identify potential therapeutic targets and repurposible drug candidates that could control of bacterial leaf blight in rice plants. RESULTS: The entire proteome of the pathogen underwent an extensive filtering process which involved removal of the paralogous proteins, rice homologs, non-essential proteins. Out of the 4382 proteins present in Xoo proteome, five hub proteins such as dnaA, dnaN, recJ, ruvA, and recR were identified for the druggability analysis. This analysis led to the identification of dnaN-encoded Beta sliding clamp protein as a potential therapeutic target and one experimental drug named [(5R)-5-(2,3-dibromo-5-ethoxy-4hydroxybenzyl)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid that can be repurposed against it. Molecular docking and 100 ns long molecular dynamics simulation suggested that the drug can form stable complexes with the target protein over time. CONCLUSION: Findings from our study indicated that the proposed drug showed potential effectiveness against bacterial leaf blight in rice caused by X. oryzae pv. oryzae. It is essential to keep in consideration that the procedure for developing novel drugs can be challenging and complicated. Even the most promising results from in silico studies should be validated through further in vitro and in vivo investigation before approval.

2.
Heliyon ; 10(3): e25596, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356594

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) have been intensively investigated in agricultural crops for decades. Nevertheless, little information is available on the application of Sphingomonas spp. as a PGPR particularly in vegetables, despite of potential plant growth promoting traits of this group. This study investigated the role of Sphingomonas panaciterrae (PB20) on growth and nutritional profile of spinach applied through seed priming (SP), soil drenching (SD), foliar application (FA), and bacterial culture filtrate foliar (BCF) applications. The results showed that, depending on different methods of application, PB20 significantly increased plant height (19.57-65.65 %), fresh weight (7.26-37.41 %), total chlorophyll (71.14-192.54 %), carotenoid (67.10-211.67 %) antioxidant (55.99-207.04), vitamin C (8.1-94.6 %) and protein content (6.7-21.5 %) compared to control in the edible part of spinach. Among the mineral nutrients, root nitrogen (N) showed greater response to bacterial application (18.65%-46.15 % increase over control) than shoot nitrogen (6.70%-21.52 % increased over control). Likewise, in all methods of application, phosphorus (P) content showed significant increase over control both in root (42.79-78.48 %) and in shoot (3.57-27.0 %). Seed priming and foliar application of PB20 increased the shoot calcium (Ca) content compared to control. BCF foliar application yielded maximum magnesium (Mg), iron (Fe) and zinc (Zn) in shoot. However, seed priming resulted in maximum Fe in root. Overall, seed priming outperformed in growth, vitamin C, antioxidants, N and P uptake, while BCF foliar application resulted in better uptake of several nutrients. Multivariate analysis validated the positive association of most of the growth parameters with SP while several nutrients with FA and BCF. Based on the findings it is evident that this rhizobacteria PB20 has the potentiality to be applied as a biofertilizer to produce nutrient-enriched spinach with an improved yield. Farmers can conveniently incorporate PR20 through seed priming before planting of spinach, with additional benefits through foliar spray.

3.
Plant Physiol Biochem ; 207: 108328, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183902

ABSTRACT

The implementation of salt stress mitigation strategies aided by microorganisms has the potential to improve crop growth and yield. The endophytic fungus Metarhizium anisopliae shows the ability to enhance plant growth and mitigate diverse forms of abiotic stress. We examined the functions of M. anisopliae isolate MetA1 (MA) in promoting salinity resistance by investigating several morphological, physiological, biochemical, and yield features in rice plants. In vitro evaluation demonstrated that rice seeds primed with MA enhanced the growth features of rice plants exposed to 4, 8, and 12 dS/m of salinity for 15 days in an agar medium. A pot experiment was carried out to evaluate the growth and development of MA-primed rice seeds after exposing them to similar levels of salinity. Results indicated MA priming in rice improved shoot and root biomass, photosynthetic pigment contents, leaf succulence, and leaf relative water content. It also significantly decreased Na+/K+ ratios in both shoots and roots and the levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide, while significantly increasing proline content in the leaves. The antioxidant enzymes catalase, glutathione S-transferase, ascorbate peroxidase, and peroxidase, as well as the non-enzymatic antioxidants phenol and flavonoids, were significantly enhanced in MA-colonized plants when compared with MA-unprimed plants under salt stress. The MA-mediated restriction of salt accumulation and improvement in physiological and biochemical mechanisms ultimately contributed to the yield improvement in salt-exposed rice plants. Our findings suggest the potential use of the MA seed priming strategy to improve salt tolerance in rice and perhaps in other crop plants.


Subject(s)
Metarhizium , Oryza , Endophytes , Oryza/microbiology , Salt Tolerance , Antioxidants
4.
Plant Physiol Biochem ; 206: 108230, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100888

ABSTRACT

Waterlogging (WL) is a major hindrance to the growth and development of leguminous crops, including mung bean. Here, we explored the effect of salicylic acid (SA) pretreatment on growth and yield output of two elite mung bean genotypes (BU Mung bean-4 and BU Mung bean-6) subjected to WL stress. SA pretreatment significantly improved shoot dry weight, individual leaf area, and photosynthetic pigment contents in both genotypes, while those improvements were higher in BU Mung bean-6 when compared with BU Mung bean-4. We also found that SA pretreatment significantly reduced the reactive oxygen species-induced oxidative burden in both BU Mung bean-6 and BU Mung bean-4 by enhancing peroxidase, glutathione S-transferase, catalase, and ascorbate peroxidase activities, as well as total flavonoid contents. SA pretreatment further improved the accumulation of proline and free amino acids in both genotypes, indicating that SA employed these osmoprotectants to enhance osmotic balance. These results were particularly corroborated with the elevated levels of leaf water status and leaf succulence in BU Mung bean-6. SA-mediated improvement in physiological and biochemical mechanisms led to a greater yield-associated feature in BU Mung bean-6 under WL conditions. Collectively, these findings shed light on the positive roles of SA in alleviating WL stress, contributing to yield improvement in mung bean crop.


Subject(s)
Fabaceae , Vigna , Antioxidants/metabolism , Vigna/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Fabaceae/metabolism , Genotype
5.
Appl Radiat Isot ; 202: 111047, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37782983

ABSTRACT

Many minerals and compounds show thermoluminescence (TL) properties but only a few of them can meet the requirements of an ideal dosimeter. Several phosphate materials have been studied for low-dose dosimetryin recent times. Among the various phosphates, ABPO4-type material shows interesting TL properties. In this study, an ABPO4-type (A = Lithium, B=Calcium) phosphor is synthesized using a modified solid-state diffusion method. Temperature is maintained below 800 °C in every step of phosphor preparation to obtain the pure phase of Lithium calcium phosphate (LiCaPO4). The purpose of this work is to synthesize LiCaPO4 using a simple method, examine its structural and luminescence properties in order to gain a deeper understanding of its TL characteristics. The general TL properties, such as TL glow curve, dose linearity, sensitivity, and fading, are investigated. Additionally, this study aims to determine various kinetic parameters through Glow Curve Deconvolution (GCD) method using the Origin Lab software together with the Chen model. XRD analysis confirmed the phase purity of the phosphor with a rhombohedral structure. Lattice parameters, unit cell volume, grain size, dislocated density, and microstrain were also calculated from XRD data. Raman analysis and Fourier Transform Infrared analysis were used to collect information about molecular bonds, vibrations, identity, and structure of the phosphor. To investigate TL properties and associated kinetic parameters, the phosphor was irradiated with 6.0 MV (photon energy) and 6.0 MeV (electron energy) from a linear accelerator for doses ranging from 0.5 Gy to 6.0 Gy. For both photon and electron energy, TL glow curves have two identical peaks near 200 °C and 240 °C.The TL glow curves for 0.5 Gy-6 Gy are deconvoluted, then fitted with the appropriate model and then calculated the kinetic parameters. Kinetic parameters such as geometric factor (µg), order of kinetics, activation energy (E), and frequency factor (s) are obtained from Chen's peak shape method. The dose against the TL intensity curve shows that the response is almost linear in the investigated dose range. For photon and electron energy, the phosphor is found to be the most sensitive at 2.0 Gy and 4.0 Gy, respectively. The phosphor shows a low fading and after 28 days of exposure, it shows a signal loss of better than 3%. The studied TL properties suggest the suitability of LiCaPO4 in radiation dosimetry and associated fields.

6.
Heliyon ; 9(8): e18978, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636386

ABSTRACT

Rhizoctonia solani is an important necrotrophic pathogenic fungus that causes okra root disease and results in severe yield reduction. Many biocontrol agents are being studied with the intent of improving plant growth and defense systems and reducing crop loss by preventing fungal infections. Recently, a member of the Hypocrealean family, Metarhizium anisopliae, has been reported for insect pathogenicity, endophytism, plant growth promotion, and antifungal potentialities. This research investigated the role of M. anisopliae (MetA1) in growth promotion and root disease suppression in okra. The antagonism against R. solani and the plant growth promotion traits of MetA1 were tested in vitro. The effects of endophytic MetA1 on promoting plant growth and disease suppression were assessed in planta. Dual culture and cell-free culture filtrate assays showed antagonistic activity against R. solani by MetA1. Some plant growth promotion traits, such as phosphate solubilization and catalase activity were also exhibited by MetA1. Seed primed with MetA1 increased the shoot, root, leaves, chlorophyll content, and biomass content compared to control okra plants. The plants challenged with R. solani showed the highest hydrogen peroxide (H2O2) and lipid peroxidation (MDA) contents in the leaves of okra. Whereas MetA1 applied plants showed a reduction of H2O2 and MDA by 5.21 and 14.96%, respectively, under pathogen-inoculated conditions by increasing antioxidant enzyme activities, including catalase (CAT), peroxidase (POD), glutathione S-transferase (GST), and ascorbate peroxidase (APX), by 30.11, 10.19, 5.62, and 5.06%, respectively. Moreover, MetA1 increased soluble sugars, carbohydrates, proline, and secondary metabolites, viz., phenol and flavonoid contents in okra resulting in a better osmotic adjustment of diseases infecting plants. MetA1 reduced disease incidence by 58.33% at 15 DAI compared to the R. solani inoculated plant. The results revealed that MetA1 improved plant growth, elevated the plant defense system, and suppressed root diseases caused by R. solani. Thus, MetA1 was found to be an effective candidate for the biological control program.

7.
Sci Rep ; 13(1): 8331, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221248

ABSTRACT

The entomopathogenic fungus (EPF), Beauveria bassiana, is reported as the most potent biological control agent against a wide range of insect families. This study aimed to isolate and characterize the native B. bassiana from various soil habitats in Bangladesh and to evaluate the bio-efficacy of these isolates against an important vegetable insect pest, Spodoptera litura. Seven isolates from Bangladeshi soils were characterized as B. bassiana using genomic analysis. Among the isolates, TGS2.3 showed the highest mortality rate (82%) against the 2nd instar larvae of S. litura at 7 days after treatment (DAT). This isolate was further bioassayed against different stages of S. litura and found that TGS2.3 induced 81, 57, 94, 84, 75, 65, and 57% overall mortality at egg, neonatal 1st, 2nd, 3rd, 4th, and 5th instar larvae, respectively, over 7 DAT. Interestingly, treatment with B. bassiana isolate TGS2.3 resulted in pupal and adult deformities as well as decreased adult emergence of S. litura. Taken together, our results suggest that a native isolate of B. bassiana TGS2.3 is a potential biocontrol agent against the destructive insect pest S. litura. However, further studies are needed to evaluate the bio-efficacy of this promising native isolate in planta and field conditions.


Subject(s)
Beauveria , Biological Control Agents , Spodoptera , Animals , Bangladesh , Gossypium , Larva , Soil
8.
Br J Neurosurg ; : 1-10, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37177983

ABSTRACT

PURPOSE: Despite advances in technology, stereotactic brain tumour biopsy remains challenging due to the risk of injury to critical structures. Indeed, choosing the correct trajectory remains essential to patient safety. Artificial intelligence can be used to perform automated trajectory planning. We present a systematic review of automated trajectory planning algorithms for stereotactic brain tumour biopsies. METHODS: A PRISMA adherent systematic review was conducted. Databases were searched using keyword combinations of 'artificial intelligence', 'trajectory planning' and 'brain tumours'. Studies reporting applications of artificial intelligence (AI) to trajectory planning for brain tumour biopsy were included. RESULTS: All eight studies were in the earliest stage of the IDEAL-D development framework. Trajectory plans were compared through a variety of surrogate markers of safety, of which the minimum distance to blood vessels was the most common. Five studies compared manual to automated planning strategies and favoured automation in all cases. However, this comes with a significant risk of bias. CONCLUSIONS: This systematic review reveals the need for IDEAL-D Stage 1 research into automated trajectory planning for brain tumour biopsy. Future studies should establish the congruence between expected risk of algorithms and the ground truth through comparisons to real world outcomes.

9.
Plants (Basel) ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365282

ABSTRACT

Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes.

10.
Cureus ; 14(6): e26141, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35747110

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia is an infection of the lungs that causes severe inflammation in the lungs' alveoli. It causes alveoli to fill with fluid, blood clots, and sometimes even pus. Patients who are infected with COVID-19 pneumonia experience severe cough, shortness of breath, fever, fatigue, chest pain, night sweats, chills, loss of appetite, etc. During the initial phase of the COVID-19 pneumonia pandemic, it was thought that ivermectin might be helpful in patients infected with COVID-19 pneumonia, but this was later proven to be false due to its severe risks/side effects. Infectious Disease Society of America (IDSA) suggests against the use of ivermectin for COVID-19 pneumonia. However, some providers continue to use ivermectin as one of the treatments for patients infected with COVID-19 infection. In this case report, we will discuss ivermectin causing acute psychosis in healthy 45- and 51-year-old patients with no known history of any mental health illness.

11.
Cureus ; 14(5): e24836, 2022 May.
Article in English | MEDLINE | ID: mdl-35547943

ABSTRACT

Psychosis is a term defined in medical literature broadly as someone who has lost contact with reality. Psychosis is typically seen in multiple psychiatric disorders, for example, schizophrenia, bipolar disorder, and severe depression. It is also seen in patients abusing drugs and other underlying medical conditions like hepatic impairment, renal failure, etc. Typically, patients with psychosis will present with hallucinations, delusions, disorganized speech, and behavior. Patients with psychosis are usually treated with antipsychotic medications. There are two types of antipsychotics: typical and atypical antipsychotics. Typical antipsychotics have a low safety profile and are associated with side effects like pancytopenia, hyperthermia, and hypothermia. Therefore, physicians and other medical professionals try to avoid prescribing typical antipsychotics for long-term use. Risperidone, an atypical antipsychotic, is considered relatively safe in patients compared to other antipsychotics. This case study will see risperidone causing hypothermia and thrombocytopenia in a healthy 34-year-old patient.

13.
Eur Radiol ; 32(11): 7998-8007, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35420305

ABSTRACT

OBJECTIVE: There has been a large amount of research in the field of artificial intelligence (AI) as applied to clinical radiology. However, these studies vary in design and quality and systematic reviews of the entire field are lacking.This systematic review aimed to identify all papers that used deep learning in radiology to survey the literature and to evaluate their methods. We aimed to identify the key questions being addressed in the literature and to identify the most effective methods employed. METHODS: We followed the PRISMA guidelines and performed a systematic review of studies of AI in radiology published from 2015 to 2019. Our published protocol was prospectively registered. RESULTS: Our search yielded 11,083 results. Seven hundred sixty-seven full texts were reviewed, and 535 articles were included. Ninety-eight percent were retrospective cohort studies. The median number of patients included was 460. Most studies involved MRI (37%). Neuroradiology was the most common subspecialty. Eighty-eight percent used supervised learning. The majority of studies undertook a segmentation task (39%). Performance comparison was with a state-of-the-art model in 37%. The most used established architecture was UNet (14%). The median performance for the most utilised evaluation metrics was Dice of 0.89 (range .49-.99), AUC of 0.903 (range 1.00-0.61) and Accuracy of 89.4 (range 70.2-100). Of the 77 studies that externally validated their results and allowed for direct comparison, performance on average decreased by 6% at external validation (range increase of 4% to decrease 44%). CONCLUSION: This systematic review has surveyed the major advances in AI as applied to clinical radiology. KEY POINTS: • While there are many papers reporting expert-level results by using deep learning in radiology, most apply only a narrow range of techniques to a narrow selection of use cases. • The literature is dominated by retrospective cohort studies with limited external validation with high potential for bias. • The recent advent of AI extensions to systematic reporting guidelines and prospective trial registration along with a focus on external validation and explanations show potential for translation of the hype surrounding AI from code to clinic.


Subject(s)
Artificial Intelligence , Radiology , Humans , Retrospective Studies , Prospective Studies , Radiography
15.
J Environ Sci Health B ; 56(12): 1051-1056, 2021.
Article in English | MEDLINE | ID: mdl-34842510

ABSTRACT

Organophosphate hydrolase (OphB) gene from Pseudomonas sp. was transferred into Arabidopsis plants to observe the bioremediation ability and tolerance level of the transgenic plant to organophosphate pesticides contaminants. Gene transfer was observed by PCR of the transgenic Arabidopsis plants' genomic DNA. Expression of ophB gene and protein levels in the transgenic Arabidopsis plants was observed by western blot analysis. The transgenic plants were resistant and tolerant to chlorpyrifos (an organophosphate pesticide), as evidenced by a toxicity test, where the transgenic plants produced greater shoot and root biomass than that of wild type plants. The fresh weight of transgenic Arabidopsis plants' did not reduced significantly till 400 ppm chlorpyrifos treatment, but fresh weight of wild type Arabidopsis plants' significantly reduced by the application of 100 ppm chlorpyrifos. Moreover, in 600 ppm chlorpyrifos liquid culture, transgenic Arabidopsis plants' produced 1.34 g biomass from 100 seeds, but wild type Arabidopsis plants' produced only 0.24 g biomass from 100 seeds. This study indicates that transgenic Arabidopsis plants having ophB gene increase the tolerance level of organophosphate pesticides.


Subject(s)
Arabidopsis , Chlorpyrifos , Pesticides , Arabidopsis/genetics , Arabidopsis/metabolism , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Gene Expression Regulation, Plant , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/toxicity , Pesticides/metabolism , Plants, Genetically Modified/genetics
16.
Ocul Immunol Inflamm ; 28(sup1): 74-84, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-31821096

ABSTRACT

Purpose: To standardize a nomenclature system for defining clinical phenotypes, and outcome measures for reporting clinical and research data in patients with ocular tuberculosis (OTB).Methods: Uveitis experts initially administered and further deliberated the survey in an open meeting to determine and propose the preferred nomenclature for terms related to the OTB, terms describing the clinical phenotypes and treatment and reporting outcomes.Results: The group of experts reached a consensus on terming uveitis attributable to tuberculosis (TB) as tubercular uveitis. The working group introduced a SUN-compatible nomenclature that also defines disease "remission" and "cure", both of which are relevant for reporting treatment outcomes.Conclusion: A consensus nomenclature system has been adopted by a large group of international uveitis experts for OTB. The working group recommends the use of standardized nomenclature to prevent ambiguity in communication and to achieve the goal of spreading awareness of this blinding uveitis entity.

17.
J Agric Food Chem ; 67(41): 11436-11443, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31553599

ABSTRACT

Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice grains. Phytic acid is considered as a major antinutrient, because the negatively charged phytic acid chelates cations, including essential micronutrients, and decreases their bioavailability to human beings and monogastric animals. To gain an insight into the interplay of these two kinds of phosphorus-containing metabolites, we used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDα1) and analyzed the mutational effect on metabolites, including phytic acid in rice grains. Metabolic profiling of two ospldα1 mutants revealed depletion in the phosphatidic acid production and lower accumulation of cytidine diphosphate diacylglycerol and phosphatidylinositol. The mutants also showed significantly reduced phytic acid content as compared to their wild-type parent, and the expression of the key genes involved in the phytic acid biosynthesis was altered in the mutants. These results demonstrate that OsPLDα1 not only plays an important role in phospholipid metabolism but also is involved in phytic acid biosynthesis, most probably through the lipid-dependent pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis in rice.


Subject(s)
Oryza/genetics , Phospholipase D/genetics , Phytic Acid/biosynthesis , Plant Proteins/genetics , DNA Mutational Analysis , Gene Expression Regulation, Plant , Oryza/enzymology , Oryza/metabolism , Phospholipase D/metabolism , Phospholipids/metabolism , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/metabolism
18.
Z Naturforsch C J Biosci ; 73(3-4): 123-135, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29397024

ABSTRACT

The objective of this study was to isolate and characterize antagonistic rhizobacteria from chili against a notorious phytopathogen Phytophthora capsici. Among the 48 bacteria isolated, BTLbbc-02, BTLbbc-03, and BTLbbc-05 were selected based on their inhibitory activity against P. capsici. They were tentatively identified as Burkholderia metallica BTLbbc-02, Burkholderia cepacia BTLbbc-03, and Pseudomonas aeruginosa BTLbbc-05, respectively, based on their 16S rRNA gene sequencing. All inhibited the growth of P. capsici at varying levels by inducing characteristic morphological alterations of P. capsici hyphae. The cell-free culture supernatant of all three isolates impaired motility (up to 100%) and caused lysis (up to 50%) of the halted zoospores. Bioassays revealed that Pseudomonas sp. had higher antagonism and zoospore motility-inhibitory effects against P. capsici compared with two other isolates, Burkholderia spp. and B. metallica, which caused vacuolation in mycelium. All three bacteria suppressed sporangium formation and zoosporogenesis of P. capsici, and improved the seed germination and growth of cucumber. Our findings suggest that epiphytic bacteria, B. metallica, B. cepacia, and P. aeruginosa, could be used as potential biocontrol agents against P. capsici. A further study is required to ensure conformity with the existing regulations for soil, plant, and human health.


Subject(s)
Antibiosis , Burkholderia cepacia/physiology , Phytophthora/physiology , Pseudomonas aeruginosa/physiology , Biological Control Agents/pharmacology , Phytophthora/drug effects , Spores, Fungal/drug effects
19.
Ecotoxicol Environ Saf ; 141: 85-92, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28319863

ABSTRACT

The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme.


Subject(s)
Organophosphates/chemistry , Pesticide Residues/chemistry , Phosphoric Monoester Hydrolases/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Environmental Restoration and Remediation , Green Fluorescent Proteins/genetics , Histidine/genetics , Isoelectric Point , Microscopy, Atomic Force , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Pseudomonas/enzymology , Pseudomonas/genetics , Spectroscopy, Fourier Transform Infrared , Substrate Specificity
20.
Prep Biochem Biotechnol ; 46(3): 229-37, 2016.
Article in English | MEDLINE | ID: mdl-25806867

ABSTRACT

The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.


Subject(s)
Alkalies/chemistry , Ethanol/metabolism , Fermentation , Oryza/metabolism , Hydrolysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...