Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37932933

ABSTRACT

According to current projections, of the 400 mega tons of plastic produced globally, 70% is waste and of that only 16% is recycled and the rest is incinerated. This is estimated to contribute to ca. 16% of the net carbon emission by 2050. Such a massive amount of unmanaged plastic waste and the associated huge carbon footprint sets a significant challenge to tackle in the coming decades. To achieve net-zero carbon emission, closed-loop circular economy in plastics is crucial but collection, sorting and processing the postconsumer recycled (PCR) plastics poses humongous challenge in achieving this circularity, unless an effective strategy is designed. In a first of its kind, a designer biobased molecule was synthesized (here maleated castor oil, mCO) that is steric and thermally stable and forms in situ "homo-cross-linking" in the melt post grafting onto PCR-PP. This designer molecule, besides offering a transient network, helps bridge the fragmented PP chains which is usually not amenable from the traditional grafting (like maleic anhydride), thereby addressing a long-standing challenge of retaining the properties post grafting due to chain scission in the melt. The resulting maleated (m) PCR-PP now offers abundant functionality which helped us design single and dual covalent adaptable network (CANs) and evaluate their consequences on the structure-property correlation. The PCR-PP Vitrimers demonstrate a distinct rubbery plateau in the melt and reprocessability with >90% recovery in mechanical properties even after the fifth sequence of recycling. We propose here for the first time how the varying reactivity (single or dual) in the transient polymer network, through dynamic exchange, regulates the closed-loop circularity in PP Vitrimers. Our results begin to suggest that the varying reactivity should be taken into account as an additional design parameter, as it influences both the stress relaxation rates and the flow activation energy. We now understand that the topology reconfiguration is strongly dependent on this varying reactivity, which also controls the overall crystalline morphology and the structural properties in the Vitrimers. This study, in addition to opening new avenues for recycling PP, will help guide researchers working in this field from both academia and industry.

2.
ACS Nano ; 17(8): 7272-7284, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37036338

ABSTRACT

Self-assembled graphene oxide lyotropic liquid crystal (GO LLC) structures are mostly formed in aqueous medium; however, most GO derivatives are water insoluble, so processing GO LLCs in water poses a practical limitation. The use of polar aprotic solvent (like dimethyl sulfoxide) for the formation of GO LLC structures would be interesting, because it would allow incorporating additives, like photoinitiators or cross-linkers, or blending with polymers that are insoluble in water, which hence would expand its scope. The well-balanced electrostatic interaction between DMSO and GO can promote and stabilize the GO nanosheets' alignment even at lower concentrations. With this in mind, herein we report mechanically robust, chlorine-tolerant, self-assembled nanostructured GO membranes for precise molecular sieving. Small-angle X-ray scattering and polarized optical microscopy confirmed the alignment of the modified GO nanosheets in polar aprotic solvent, and the LLC structure was effectively preserved even after cross-linking under UV light. We found that the modified GO membranes exhibited considerably improved salt rejection for monovalent ions (99%) and water flux (120 LMH) as compared to the shear-aligned GO membrane, which is well supported by forward osmosis simulation studies. Additionally, our simulation studies indicated that water molecules traveled a longer path while permeating through the GO membrane compared to the GO LLC membrane. Consequently, salt ions permeate slowly across the GO LLC membrane, yielding higher salt rejection than the GO membrane. This begins to suggest strong electrostatic repulsion with the salt ions, causing higher salt rejection in the GO LLC membrane. We foresee that the ordered cross-linked GO sheets contributed to excellent mechanical stability under a high-pressure, cross-flow, chlorine environment. Overall, these membranes are easily scalable, exhibit good mechanical stability, and represent a breakthrough for the potential use of polymerized GO LLC membranes in practical water remediation applications.

3.
Nanoscale ; 15(8): 3805-3822, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723254

ABSTRACT

In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 µm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host-guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host-guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2-12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.

4.
ACS Omega ; 3(7): 7639-7647, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458914

ABSTRACT

Hydrodeoxygenation process is a potential route for upgrading biofuel intermediates, like vanillin, which is obtained in huge quantities through the chemical treatment of the abundant lignocellulosic biomass resources of nature, and this is attracting increasing attentions over the years. Herein, we report the grafting of palladium nanoparticles at the surface of porous organic polymer Pd-PDVTTT-1 synthesized through the co-condensation of 1,3,5-triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione and divinylbenzene in the presence of radical initiator under solvothermal reaction conditions. The Pd-PDVTTT-1 material has been characterized thoroughly by powder X-ray diffraction, nitrogen sorption, ultra-high-resolution transmission electron Microscopy, Fourier-transform infrared spectroscopy, 13C MAS NMR, and X-ray photoelectron spectroscopy analyses. High surface area together with good thermal stability of the Pd-PDVTTT-1 material has motivated us to explore its potential as heterogeneous catalyst in the hydrodeoxygenation of vanillin for the production of upgraded biofuel 2-methoxy-4-methylphenol in almost quantitative yield and high selectivity (94%).

SELECTION OF CITATIONS
SEARCH DETAIL
...