Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(1)2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30621158

ABSTRACT

This work presents the use of peptide ligand HWRGWV and its cognate sequences to develop affinity adsorbents that compete with Protein A in terms of binding capacity and quality of the eluted product. First, the peptide ligand was conjugated to crosslinked agarose resins (WorkBeads) at different densities and using different spacer arms. The optimization of ligand density and display resulted in values of static and dynamic binding capacity of 85 mg/mL and 65 mg/mL, respectively. A selected peptide-WorkBeads adsorbent was utilized for purifying Mabs from Chinese Hamster Ovary (CHO) cell culture supernatants. The peptide-WorkBeads adsorbent was found able to withstand sanitization with strong alkaline solutions (0.5 M NaOH). The purity of the eluted product was consistently higher than 95%, with logarithmic removal value (LRV) of 1.5 for host cell proteins (HCPs) and 4.0 for DNA. HCP clearance was significantly improved by adding a post-load washing step with either 0.1 M Tris HCl pH 9 or 1 M NaCl. The cognate peptide of HWRGWV, constructed by replacing arginine (R) with citrulline, further increased the HCP LRV to 2.15. The peptide-based adsorbent also showed a remarkable performance in terms of removal of Mab aggregates; unlike Protein A, in fact, HWRGWV was found to bind only monomeric IgG. Collectively, these results demonstrate the potential of peptide-based adsorbents as alternative to Protein A for the purification of therapeutic antibodies.


Subject(s)
Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Immunoglobulin G/metabolism , Peptides/metabolism , Animals , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetinae , Cricetulus , Immunosorbents , Ligands , Protein Binding , Sepharose , Staphylococcal Protein A
2.
Electrophoresis ; 38(22-23): 2914-2921, 2017 11.
Article in English | MEDLINE | ID: mdl-28833255

ABSTRACT

Common limitations of Protein A affinity chromatography include high adsorbent costs, ligand instability and possible ligand leakage. In this study, a short peptide with affinity for IgG was synthesized chemically and subsequently immobilized on a megaporous support. The support was prepared utilising the cryogel technique while the peptide-ligand was covalently immobilised via thiol-epoxy click chemistry. The cryogel support was chemically grafted to increase the number of reaction sites. This adsorbent was designated as "MP-Pep". Adsorption isotherms were employed to evaluate protein binding capacity. A maximum static binding capacity within the range of 30-60 mg/mL was observed for T hIgG. This parameter compares well with other commercial and non-commercial adsorbents, as reported in the literature. As a control material, a Protein A grafted megaporous cryogel was synthesized. Dynamic binding capacity values were obtained by breakthrough analysis. The peptide cryogel showed a dynamic capacity value 9.0 mg/mL in comparison to 9.7 mg/mL in the case of the Protein A based adsorbent. The ratio of dynamic binding capacity to static binding capacity was 20%, indicating suboptimal product capture. However, the advantage of MP-Pep lies in its cost-effective preparations while maintaining a reasonable binding capacity for the targeted product. The presence of cooperative effects during protein binding could also represent an advantage during the processing of a feedstock containing a product in high concentration.


Subject(s)
Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Peptides/metabolism , Adsorption , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Ligands , Peptides/chemistry , Porosity
3.
J Chromatogr A ; 1445: 93-104, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27072524

ABSTRACT

A strategy is presented for developing variants of peptide ligands with enhanced biochemical stability for the purification of antibodies from animal sera. Antibody-binding sequences HWRGWV, HYFKFD, and HFRRHL, previously discovered by our group, were modified with non-natural amino acids to gain resistance to proteolysis, while maintaining target affinity and selectivity. As trypsin and α-chymotrypsin were chosen as models of natural proteolytic enzymes, the basic (arginine and lysine) and aromatic (tryptophan, phenylalanine, and tyrosine) amino acids were replaced with non-natural analogs. Using the docking software HADDOCK, a virtual library of peptide variants was designed and screened in-silico against the known HWRGWV binding site on the pFc fragment of IgG. A pool of selected sequences with the highest predicted free energy of binding was synthesized on chromatographic resin, and the resulting adsorbents were tested for IgG binding and resistance to proteases. The ligand variants exhibited binding capacities and specificities comparable to the original sequences, yet with much higher proteolytic resistances. The sequences HWMetCitGWMetV and HFMetCitCitHL was used for purifying polyclonal IgG from IgG-rich fractions of human plasma, with yields and purity above 90%. Notably, due to electrical neutrality, the variant showed higher selectivity than the original sequence. Binding isotherms were also constructed, which confirmed the docking predictions. This method represents a general strategy for enhancing the biochemical stability as well as the affinity and selectivity of natural or synthetic peptide ligands for bioseparations.


Subject(s)
Antibodies/isolation & purification , Blood Chemical Analysis/methods , Ligands , Peptides/chemistry , Animals , Binding Sites , Chromatography, Affinity , Chymotrypsin/metabolism , Humans , Protein Binding , Trypsin/metabolism
4.
J Mol Recognit ; 28(3): 191-200, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25663265

ABSTRACT

The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry.


Subject(s)
Apatites/chemistry , Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Peptides/chemical synthesis , Ceramics , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/chemistry , Peptides/chemistry
5.
J Chromatogr A ; 1339: 26-33, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24661869

ABSTRACT

In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy.


Subject(s)
Affinity Labels/chemistry , Apatites/chemistry , Green Fluorescent Proteins/chemistry , Peptides/chemistry , Recombinant Fusion Proteins/isolation & purification , Ceramics , Chromatography, Affinity/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Peptides/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
6.
J Mol Recognit ; 26(8): 341-50, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23784990

ABSTRACT

Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA-specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N-terminal sequence was found in two selected peptides: F4-2 (KPRSMLH) and F5-4 (KPRSVSG). The peptide F5-4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5-4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage-derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins.


Subject(s)
Apatites/chemistry , Ceramics/chemistry , Chromatography, Affinity/methods , Combinatorial Chemistry Techniques , Peptide Library , Peptides/metabolism , Adsorption , Amino Acid Sequence , Amino Acids , Buffers , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Microscopy, Fluorescence , Molecular Sequence Data , Peptides/chemistry , Protein Binding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
7.
Eur Biophys J ; 42(5): 363-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23271514

ABSTRACT

Single channel electrophysiological studies have been carried out to elucidate the underlying interactions during the translocation of polypeptides through protein channels. For this we used OmpF from the outer cell membrane of E. coli and arginine-based peptides of different charges, lengths and covalently linked polyethylene glycol as a model system. In order to reveal the fast kinetics of peptide binding, we performed a temperature scan. Together with the voltage-dependent single-channel conductance, we quantify peptide binding and translocation.


Subject(s)
Models, Molecular , Peptides/metabolism , Porins/metabolism , Cell Membrane/metabolism , Electrophysiological Phenomena , Escherichia coli/cytology , Kinetics , Peptides/chemistry , Polyethylene Glycols/chemistry , Porins/chemistry , Protein Conformation , Protein Transport , Temperature , Thermodynamics
8.
Food Funct ; 4(2): 328-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23172122

ABSTRACT

Flavanols from tea have been reported to accumulate in the cell nucleus in considerable concentrations. The nature of this phenomenon, which could provide novel approaches in understanding the well-known beneficial health effects of tea phenols, is investigated in this contribution. The interaction between epigallocatechin gallate (EGCG) from green tea and a selection of theaflavins from black tea with selected cell nuclear structures such as model histone proteins, double stranded DNA and quadruplex DNA was investigated using mass spectrometry, Circular Dichroism spectroscopy and fluorescent assays. The selected polyphenols were shown to display affinity to all of the selected cell nuclear structures, thereby demonstrating a degree of unexpected molecular promiscuity. Most interestingly theaflavin-digallate was shown to display the highest affinity to quadruplex DNA reported for any naturally occurring molecule reported so far. This finding has immediate implications in rationalising the chemopreventive effect of the tea beverage against cancer and possibly the role of tea phenolics as "life span essentials".


Subject(s)
Biflavonoids/pharmacology , Camellia sinensis/chemistry , Catechin/analogs & derivatives , Cell Nucleus Structures/drug effects , DNA/chemistry , Gallic Acid/analogs & derivatives , Histones/chemistry , Plant Extracts/pharmacology , Telomere/chemistry , Catechin/pharmacology , Cell Nucleus Structures/chemistry , Cell Nucleus Structures/metabolism , Circular Dichroism , DNA/metabolism , G-Quadruplexes/drug effects , Gallic Acid/pharmacology , Histones/metabolism , Humans , Kinetics , Mass Spectrometry , Polyphenols/pharmacology , Tea/chemistry , Telomere/metabolism
9.
Rapid Commun Mass Spectrom ; 26(24): 2865-76, 2012 Dec 30.
Article in English | MEDLINE | ID: mdl-23136017

ABSTRACT

RATIONALE: Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. METHODS: A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. RESULTS: Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. CONCLUSIONS: We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest.


Subject(s)
Bacterial Proteins/chemistry , Combinatorial Chemistry Techniques/methods , Hydrazines/chemistry , Macrocyclic Compounds/chemistry , Oligopeptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Anti-Bacterial Agents/chemistry , Drug Discovery , Molecular Dynamics Simulation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...