Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(1): 25, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240841

ABSTRACT

KEY MESSAGE: QPm.NOBAL-3A is an important QTL providing robust adult plant powdery mildew resistance in Nordic and Baltic spring wheat, aiding sustainable crop protection and breeding. Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, poses a significant threat to bread wheat (Triticum aestivum L.), one of the world's most crucial cereal crops. Enhancing cultivar resistance against this devastating disease requires a comprehensive understanding of the genetic basis of powdery mildew resistance. In this study, we performed a genome-wide association study (GWAS) using extensive field trial data from multiple environments across Estonia, Latvia, Lithuania, and Norway. The study involved a diverse panel of recent wheat cultivars and breeding lines sourced from the Baltic region and Norway. We identified a major quantitative trait locus (QTL) on chromosome 3A, designated as QPm.NOBAL-3A, which consistently conferred high resistance to powdery mildew across various environments and countries. Furthermore, the consistency of the QTL haplotype effect was validated using an independent Norwegian spring wheat panel. Subsequent greenhouse seedling inoculations with 15 representative powdery mildew isolates on a subset of the GWAS panel indicated that this QTL provides adult plant resistance and is likely of race non-specific nature. Moreover, we developed and validated KASP markers for QPm.NOBAL-3A tailored for use in breeding. These findings provide a critical foundation for marker-assisted selection in breeding programs aimed at pyramiding resistance QTL/genes to achieve durable and broad-spectrum resistance against powdery mildew.


Subject(s)
Ascomycota , Quantitative Trait Loci , Triticum/genetics , Triticum/microbiology , Chromosome Mapping , Genome-Wide Association Study , Disease Resistance/genetics , Genes, Plant , Ascomycota/genetics , Plant Breeding , Chromosomes, Plant/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
2.
Front Genet ; 12: 661742, 2021.
Article in English | MEDLINE | ID: mdl-34054924

ABSTRACT

Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici and powdery mildew (PM) caused by Blumeria graminis f.sp tritici (Bgt) are among the forefront foliar diseases of wheat that lead to a significant loss of grain yield and quality. Resistance breeding aimed at developing varieties with inherent resistance to STB and PM diseases has been the most sustainable and environment-friendly approach. In this study, 175 winter wheat landraces and historical cultivars originated from the Nordic region were evaluated for adult-plant resistance (APR) to STB and PM in Denmark, Estonia, Lithuania, and Sweden. Genome-wide association study (GWAS) and genomic prediction (GP) were performed based on the adult-plant response to STB and PM in field conditions using 7,401 single-nucleotide polymorphism (SNP) markers generated by 20K SNP chip. Genotype-by-environment interaction was significant for both disease scores. GWAS detected stable and environment-specific quantitative trait locis (QTLs) on chromosomes 1A, 1B, 1D, 2B, 3B, 4A, 5A, 6A, and 6B for STB and 2A, 2D, 3A, 4B, 5A, 6B, 7A, and 7B for PM adult-plant disease resistance. GP accuracy was improved when assisted with QTL from GWAS as a fixed effect. The GWAS-assisted GP accuracy ranged within 0.53-0.75 and 0.36-0.83 for STB and PM, respectively, across the tested environments. This study highlights that landraces and historical cultivars are a valuable source of APR to STB and PM. Such germplasm could be used to identify and introgress novel resistance genes to modern breeding lines.

3.
Virus Res ; 166(1-2): 125-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22425583

ABSTRACT

Cocksfoot mottle virus (CfMV) localization in oat plants was analyzed during three weeks post infection by immunohistochemical staining to follow its spread through different tissues. In early stages of infection, the virus was first detectable in phloem parenchyma and bundle sheath cells of inoculated leaves. Bundle sheath and phloem parenchyma were also the cell types where the virus was first detected in stems and systemic leaves of infected plants. In later stages of infection, CfMV spread also into the mesophyll surrounding vascular bundles and was seldom detected in xylem parenchyma of inoculated leaves. In systemic leaves, CfMV was not detected from xylem. Moreover, sometimes it was found from phloem only. In straw and roots, CfMV was detected both from phloem and xylem. According to our observations, CfMV predominantly moves through phloem, which makes the systemic movement of CfMV different from that of another monocot-infecting sobemovirus, Rice yellow mottle virus (RYMV).


Subject(s)
Avena/virology , Plant Diseases/virology , Plant Viruses/pathogenicity , RNA Viruses/pathogenicity , Immunohistochemistry , Phloem/virology , Plant Leaves/virology , Plant Roots/virology , Plant Stems/virology , Xylem/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...