Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445801

ABSTRACT

The brown alga Pelvetia canaliculata is one of the species successfully adapted to intertidal conditions. Inhabiting the high intertidal zone, Pelvetia spends most of its life exposed to air, where it is subjected to desiccation, light, and temperature stresses. However, the physiological and biochemical mechanisms allowing this alga to tolerate such extreme conditions are still largely unknown. The objective of our study is to compare the biochemical composition of Pelvetia during the different phases of the tidal cycle. To our knowledge, this study is the first attempt to draft a detailed biochemical network underneath the complex physiological processes, conferring the successful survival of this organism in the harsh conditions of the high intertidal zone of the polar seas. We considered the tide-induced changes in relative water content, stress markers, titratable acidity, pigment, and phlorotannin content, as well as the low molecular weight metabolite profiles (GC-MS-based approach) in Pelvetia thalli. Thallus desiccation was not accompanied by considerable increase in reactive oxygen species content. Metabolic adjustment of P. canaliculata to emersion included accumulation of soluble carbohydrates, various phenolic compounds, including intracellular phlorotannins, and fatty acids. Changes in titratable acidity accompanied by the oscillations of citric acid content imply that some processes related to the crassulacean acid metabolism (CAM) may be involved in Pelvetia adaptation to the tidal cycle.


Subject(s)
Phaeophyceae , Phaeophyceae/chemistry , Gas Chromatography-Mass Spectrometry , Reactive Oxygen Species/metabolism , Carbohydrates
2.
Antioxidants (Basel) ; 12(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36978944

ABSTRACT

Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins-polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well known as strong antioxidants with a broad spectrum of biological activities. In the algal cells, phlorotannins can either accumulate in the cytoplasm or can be secreted into the cell wall (CW). The biological activities of extractable intracellular phlorotannins have been comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins in fucoid algae, whereas soluble intracellular phlorotannins rely on aryl and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, to the best of our knowledge, for the first time we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales-Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors.

3.
Plants (Basel) ; 12(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36840169

ABSTRACT

Marine seaweeds synthesize a plethora of bioactive metabolites, of which phlorotannins of brown algae currently attract special attention due to their high antibiotic and cytotoxic capacities. Here we measured the minimum inhibitory concentrations (MICs) of several semi-purified phlorotannin preparations of different origins and molecular composition using a set of model unicellular organisms, such as Escherichia coli, Saccharomyces cerevisiae, Chlamydomonas reinhardtii, etc. For the first time, MIC values were evaluated for phlorotannin-enriched extracts of brown algae of the orders Ectocarpales and Desmarestiales. Phlorotannin extracts of Desmarestia aculeata, Fucus vesiculosus, and Ectocarpus siliculosus showed the lowest MIC values against most of the treated organisms (4-25 µg/mL for bacteria and yeast). Analysis of the survival curves of E. coli showed that massive loss of cells started after 3-4 h of exposure. Microalgae were less susceptible to activity of phlorotannin extracts, with the highest MIC values (≥200 µg/mL) measured for Chlorella vulgaris cells. D. aculeata, E. siliculosus, and three fucalean algae accumulate considerable amounts (4-16% of dry weight) of phlorotannins with MIC values similar to those widely used antibiotics. As these species grow abundantly in polar and temperate seas and have considerable biomass, they may be regarded as promising sources of phlorotannins.

SELECTION OF CITATIONS
SEARCH DETAIL
...