Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Death Discov ; 10(1): 229, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740765

ABSTRACT

Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1ß and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1ß-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.

2.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675952

ABSTRACT

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


Subject(s)
COVID-19 , DNA-Binding Proteins , Disease Models, Animal , Killer Cells, Natural , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Killer Cells, Natural/immunology , COVID-19/immunology , COVID-19/virology , Mice , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , DNA-Binding Proteins/genetics , DNA-Binding Proteins/deficiency , Mice, Knockout , Humans , Lung/pathology , Lung/virology , Lung/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , B-Lymphocytes/immunology , Female , T-Lymphocytes/immunology
3.
Infect Drug Resist ; 15: 4065-4078, 2022.
Article in English | MEDLINE | ID: mdl-35924014

ABSTRACT

Introduction: Chikungunya is caused by an alpha virus transmitted to humans by an infected mosquito. Infection is generally considered to be self-limiting and non-critical. Chikungunya infection may be diagnosed by severe joint pain with fever, but it is difficult to diagnose because the symptoms of chikungunya are common to many pathogens, including dengue fever. Diagnosis mainly depends on viral culture, reverse transcriptase polymerase chain reaction (RT-PCR), and IgM ELISA. Early and accurate diagnosis of the virus can be achieved by the application of PCR methods, but the high cost and the need for a thermal cycler restrict the use of such methods. On the other hand, antibody-based IgM ELISA is considered to be inexpensive, but antibodies against chikungunya virus (CHIKV) only develop after 4 days of infection, so it has limited application in the earlier diagnosis of viral infection and the management of patients. Because of these challenges, a simple antigen-based sensitive, specific, and rapid detection method is required for the early and accurate clinical diagnosis of chikungunya. Methods: The amino acid sequence of CHIKV ectodomain E1 and E2 proteins was analyzed using bioinformatics tools to determine the antigenic residues, particularly the B-cell epitopes and their characteristics. Recombinant E2-E1 CHIKV antigen was used for the development of polyclonal antibodies in hamsters and IgG was purified. Serological tests of 96 CHIKV patients were conducted by antigen-capture ELISA using primary antibodies raised against rCHIKV E2-E1 in hamsters and human anti-CHIKV antibodies. Results: We observed high specificity and sensitivity, of 100% and 95.8%, respectively, and these values demonstrate the efficiency of the test as a clinical diagnostic tool. There was no cross-reactivity with samples taken from dengue patients. Discussion: Our simple and sensitive sandwich ELISA for the early-phase detection of CHIKV infection may be used to improve the diagnosis of chikungunya.

4.
Inflammation ; 45(5): 1849-1863, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953688

ABSTRACT

The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs have shown promising effects in preventing or treating COVID-19, but due to the development of mutant strains through rapid viral evolution, urgent investigations are warranted in order to develop preventive measures and further improve current vaccine candidates. Positive-sense-single-stranded RNA viruses comprise many (re)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form an important first line of defense against these viruses. Flexibility in the genome aids the virus to develop multiple strategies to evade the innate immune response and efficiently promotes their replication and infective capacity. This review will focus on the innate immune response to SARS-CoV-2 infection and the virus' evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Since interferons have been implicated in inflammatory diseases and immunopathology along with their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome pathway, and release of its products including the pro-inflammatory cytokines IL-6, IL-18, and IL-1ß. This predictive view may aid in designing an immune intervention or preventive vaccine for COVID-19 in the near future.


Subject(s)
COVID-19 , Inflammasomes , Antiviral Agents , COVID-19 Vaccines , Humans , Immunity, Innate , Inflammasomes/metabolism , Interferons , Interleukin-18 , Interleukin-6 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin , SARS-CoV-2
5.
ACS Omega ; 7(12): 10718-10728, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382308

ABSTRACT

Visceral leishmaniasis (VL) or kala-azar is a vector-borne dreaded protozoal infection that is caused by the parasite Leishmania donovani. With increases in the dramatic infection rates, present drug toxicity, resistance, and the absence of an approved vaccine, the development of new antileishmanial compounds from plant sources remains the keystone for the control of visceral leishmaniasis. In this study, we evaluated the leishmanicidal effect of thymoquinone against L. donovani with an in vitro and ex vivo model. Thymoquinone exhibited potent antipromastigote activity with IC50 and IC90 concentrations achieved at 6.33 ± 1.21 and 20.71 ± 2.15 µM, respectively, whereas the IC50 and IC90 concentrations were found to be 7.83 ± 1.65 and 27.25 ± 2.20 µM against the intramacrophagic form of amastigotes, respectively. Morphological changes in promastigotes and growth reversibility study following treatment confirmed the leishmanicidal effect of thymoquinone. Further, thymoquinone exhibited leishmanicidal activities against L. donovani promastigote through cytoplasmic shrinkage, membrane blebbing, chromatin condensation, cellular and nuclear shrinkage, and DNA fragmentation, as observed under scanning and transmission electron microscopy analyses. The antileishmanial activity was exerted via programmed cell death as proved by exposure of phosphatidylserine, DNA nicking by TUNEL assay, and loss of mitochondrial membrane potential. Thymoquinone at a concentration of 200 µM was devoid of any cytotoxic effects against mammalian macrophage cells. Thymoquinone showed strong leishmanicidal activity against L. donovani, which is mediated via an apoptosis mode of parasitic cell death, and accordingly, thymoquinone may be the source of a new lead molecule for the cure of VL.

6.
Int J Nanomedicine ; 16: 7285-7295, 2021.
Article in English | MEDLINE | ID: mdl-34737566

ABSTRACT

INTRODUCTION: The current therapeutic armory for visceral leishmaniasis (VL) caused by Leishmania donovani complex is inadequate, coupled with serious limitations. Combination therapy has proved ineffective due to mounting resistance; however, the search for safe and effective drugs is desirable, in the absence of any vaccine. There is a growing interest in the application of nanoparticles for the therapeutic effectiveness of leishmaniasis. Aimed in this direction, we assessed the antileishmanial effect of gold nanoparticles (GNP) against L. donovani in vitro. METHODS: GNP were synthesized and characterized for particle size by dynamic light scattering (DLS) and atomic force microscopy (AFM) and for optical properties by UV-visible spectroscopy. Cytotoxicity of GNP was measured by the MTT proliferation assay. The antileishmanial activity of the nanoparticles was evaluated against L. donovani promastigotes and macrophage-infected amastigotes in vitro. RESULTS: GNP showed a strong SPR peak at 520 nm and mean particle size, polydispersity index (PDI), and zeta potential of 56.0 ± 10 nm, 0.3 ± 0.1 and -27.0 ± 3 mV, respectively. The GNPs were smooth and spherical with a mean particle diameter of 20 ± 5 nm. Nanoparticles [1.2-100 µM] did not reveal any cytotoxicity on RAW 264.7 murine macrophage cell line, but exerted significant activity against both promastigotes and amastigote stages of L. donovani with 50% inhibitory concentrations (IC50) of 18.4 ± 0.4 µM and 5.0 ± 0.3 µM, respectively. GNP showed significant antileishmanial activity with deformed morphology of parasites and the least number of surviving promastigotes after growth reversibility analysis. CONCLUSION: GNP may provide a platform to conjugate antileishmanial drugs onto the surface of nanoparticles to enhance their therapeutic effectiveness against VL. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Metal Nanoparticles , Pharmaceutical Preparations , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Gold/therapeutic use , Leishmaniasis, Visceral/drug therapy , Mice
7.
Biomed Pharmacother ; 143: 112156, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649333

ABSTRACT

Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.


Subject(s)
Apoptosis/drug effects , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Mitochondria/drug effects , Oxidative Stress/drug effects , Phyllanthus emblica , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Fruit , Humans , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Leishmania donovani/ultrastructure , Leishmaniasis, Visceral/parasitology , Mitochondria/metabolism , Mitochondria/ultrastructure , Phyllanthus emblica/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , THP-1 Cells , Trypanocidal Agents/isolation & purification
8.
ACS Omega ; 6(14): 9791-9803, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869959

ABSTRACT

The re-emergence of Chikungunya virus (CHIKV) infection in humans with no approved antiviral therapies or vaccines is one of the major problems with global significance. In the present investigation, we screened 80 in-house quinoline derivatives for their anti-CHIKV activity by computational techniques and found 4-hydroxy-1-methyl-3-(3-morpholinopropanoyl)quinoline-2(1H)-one (QVIR) to have potential binding affinities with CHIKV nsP2 and E2 glycoproteins. QVIR was evaluated in vitro for its anti-CHIKV potential. QVIR showed strong inhibition of CHIKV infection with an EC50 (50% effective concentration) value of 2.2 ± 0.49 µM without significant cytotoxicity (CC50 > 200 µM) and was chosen for further elucidation of its antiviral mechanism. The infectious viral particle formation was abolished by approximately 72% at a QVIR concentration of 20 µM during infection in the BHK-21 cell line, and the CHIKV RNA synthesis was diminished by 84% for nsP2 as well as 74% for E2, whereas the levels of viral proteins were decreased by 69.9% for nsP2 and 53.9% for E2. Flow cytometry analysis confirmed a huge decline in the expression of viral nsP2 and E2 proteins by 71.84 and 67.7%, respectively. Time of addition experiments indicated that QVIR inhibited viral infection at early and late stages of viral replication cycle, and the optimal inhibition was observed at 16 h post infection. The present study advocates for the first time that QVIR acts as a substantial and potent inhibitor against CHIKV and might be as an auspicious novel drug candidate for the development of therapeutic agents against CHIKV infections.

9.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32155134

ABSTRACT

Chikungunya virus (CHIKV) infection causes acute febrile illness in humans, and some of these individuals develop a debilitating chronic arthritis that can persist for months to years for reasons that remain poorly understood. In this study from India, we characterized antibody response patterns in febrile chikungunya patients and further assessed the association of these initial febrile-phase antibody response patterns with protection versus progression to developing chronic arthritis. We found 5 distinct patterns of the antibody responses in the febrile phase: no CHIKV binding or neutralizing (NT) antibodies but PCR positive, IgM alone with no NT activity, IgM alone with NT activity, IgM and IgG without NT activity, and IgM and IgG with NT activity. A 20-month follow-up showed that appearance of NT activity regardless of antibody isotype or appearance of IgG regardless of NT activity during the initial febrile phase was associated with a robust protection against developing chronic arthritis in the future. These findings, while providing potentially novel insights on correlates of protective immunity against chikungunya-induced chronic arthritis, suggest that qualitative differences in the antibody response patterns that have evolved during the febrile phase can serve as biomarkers that allow prediction of protection or progression to chronic arthritis in the future.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , Arthritis/prevention & control , Chikungunya Fever/immunology , Chikungunya virus/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Antibodies, Viral/blood , Arthritis/blood , Arthritis/immunology , Chikungunya Fever/blood , Chikungunya virus/metabolism , Chronic Disease , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood
10.
PLoS Negl Trop Dis ; 13(5): e0007227, 2019 05.
Article in English | MEDLINE | ID: mdl-31071090

ABSTRACT

BACKGROUND: There is a pressing need for drug discovery against visceral leishmaniasis, a life-threatening protozoal infection, as the available chemotherapy is antiquated and not bereft of side effects. Plants as alternate drug resources has rewarded mankind in the past and aimed in this direction, we investigated the antileishmanial potential of Cinnamomum cassia. METHODOLOGY: Dichloromethane, ethanolic and aqueous fractions of C. cassia bark, prepared by sequential extraction, were appraised for their anti-promastigote activity along with apoptosis-inducing potential. The most potent, C. cassia dichloromethane fraction (CBD) was evaluated for anti-amastigote efficacy in infected macrophages and nitric oxide (NO) production studied. The in vivo antileishmanial efficacy was assessed in L. donovani infected BALB/c mice and hamsters and various correlates of host protective immunity ascertained. Toxicity profile of CBD was investigated in vitro against peritoneal macrophages and in vivo via alterations in liver and kidney functions. The plant secondary metabolites present in CBD were identified by gas chromatography-mass spectroscopy (GC-MS). PRINCIPAL FINDINGS: CBD displayed significant anti-promastigote activity with 50% inhibitory concentration (IC50) of 33.6 µg ml-1 that was mediated via apoptosis. This was evidenced by mitochondrial membrane depolarization, increased proportion of cells in sub-G0-G1 phase, ROS production, PS externalization and DNA fragmentation (TUNEL assay). CBD also inhibited intracellular amastigote proliferation (IC50 14.06 µg ml-1) independent of NO production. The in vivo protection achieved was 80.91% (liver) and 82.92% (spleen) in mice and 75.61% (liver) and 78.93% (spleen) in hamsters indicating its profound therapeutic efficacy. CBD exhibited direct antileishmanial activity, as it did not specifically induce a T helper type (Th)-1-polarized mileu in cured hosts. This was evidenced by insignificant modulation of NO production, lymphoproliferation, DTH (delayed type hypersensitivity), serum IgG2a and IgG1 levels and production of Th2 cytokines (IL-4 and IL-10) along with restoration of pro-inflammatory Th1 cytokines (INF-γ, IL-12p70) to the normal range. CBD was devoid of any toxicity in vitro as well as in vivo. The chemical constituents, cinnamaldehyde and its derivatives present in CBD may have imparted the observed antileishmanial effect. CONCLUSIONS: Our study highlights the profound antileishmanial efficacy of C. cassia bark DCM fraction and merits its further exploration as a source of safe and effective antieishmanial compounds.


Subject(s)
Antiprotozoal Agents/administration & dosage , Cinnamomum aromaticum/chemistry , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Plant Extracts/administration & dosage , Animals , Antiprotozoal Agents/isolation & purification , Cricetinae , Cytokines/genetics , Cytokines/immunology , Female , Gas Chromatography-Mass Spectrometry , Humans , Leishmania donovani/physiology , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Macrophages, Peritoneal/drug effects , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Plant Bark/chemistry , Plant Extracts/isolation & purification
11.
Bioorg Chem ; 89: 102986, 2019 08.
Article in English | MEDLINE | ID: mdl-31146198

ABSTRACT

In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ±â€¯1.68, 40.1 ±â€¯1.0 and 19.0 ±â€¯1.47 µg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ±â€¯2.72, 66.8 ±â€¯2.05 and 73.1 ±â€¯1.69 µg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.


Subject(s)
Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Oxadiazoles/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Binding Sites , Cell Survival/drug effects , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Inhibitory Concentration 50 , Leishmania/physiology , Macrophages/cytology , Macrophages/metabolism , Macrophages/parasitology , Mice , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Protein Structure, Tertiary , Pyrazoles/chemistry , RAW 264.7 Cells , Rats , Rats, Wistar , Structure-Activity Relationship
12.
Redox Rep ; 23(1): 168-179, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29961403

ABSTRACT

OBJECTIVE: The objectives of our study were to investigate the possible effect of rosuvastatin in ameliorating high salt and cholesterol diet (HSCD)-induced cognitive impairment and to also investigate its possible action via the Nrf2-ARE pathway. METHODS: In silico studies were performed to check the theoretical binding of rosuvastatin to the Nrf2 target. HSCD was used to induce cognitive impairment in rats and neurobehavioral studies were performed to evaluate the efficacy of rosuvastatin in enhancing cognition. Biochemical analyses were used to estimate changes in oxidative markers. Western blot and immunohistochemical analyses were done to check Nrf2 translocation. TUNEL and caspase 3 tests were performed to evaluate reversal of apoptosis by rosuvastatin. RESULTS: Rosuvastatin showed good theoretical affinity to Nrf2, significantly reversed changes in oxidative biomarkers which were induced by HSCD, and also improved the performance of rats in the neurobehavioral test. A rise in nuclear translocation of Nrf2 was revealed through immunohistochemical analysis and western blot. TUNEL staining and caspase 3 activity showed attenuation of apoptosis. DISCUSSION: We have investigated a novel mechanism of action for rosuvastatin (via the Nrf2-ARE pathway) and demonstrated that it has the potential to be used in the treatment of cognitive impairment.


Subject(s)
Cholesterol/adverse effects , Cognitive Dysfunction/drug therapy , NF-E2-Related Factor 2/metabolism , Rosuvastatin Calcium/therapeutic use , Sodium Chloride/toxicity , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Female , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
13.
Infect Genet Evol ; 62: 253-261, 2018 08.
Article in English | MEDLINE | ID: mdl-29698770

ABSTRACT

Acute gastroenteritis due to Rotavirus (RV) infection is a major cause of morbidity and mortality in infants and young children worldwide. In India, around 0.1 million death reported annually due to RV illness. So, to assess the disease burden continuous surveillance of the circulating genotypes is needed. This study aimed to ascertain the genetic variance of 429 rotavirus positive specimens observed during the period October 2013-September 2014 at four study centers from North India. Out of 1057 patients enrolled, 1018 stool samples were collected at four centers in four different states of North India. Children aged <5 years who showed the symptoms of severe diarrhea and needed hospitalization were enrolled. The stool samples collected were screened by Enzyme Immuno Assay (EIA), and the RV positive samples were characterized by semi-nested PCR. During the study period October 2013 through September 2014, ~42% patients were found to be rotavirus positive of 1018 collected specimen. In Delhi, Rohtak and Meerut, we observed that Rotavirus is seasonal compared to Tanda (HP). The rate of rotavirus detection was significantly higher among children aged below 2 years, and a total of 21.5% of rotavirus infections comprised children aged <6 months. Genotype G1(48.0%) was predominant and frequently circulating strain whereas G12 (16.8%) and G9 (10.0%) was second and third prevalent strain in the four states of North India. High frequency of G1 genotypes was detected under the age group of 6-11 months which is followed by G12, similarly high rate severe disease was observed due to G1 genotypes followed by P[8], P[6] and G12. The most common types of strains were G1P[8] (27.73% of strains), G12P[6] (13.28%), G9P[4] (7.23%) and G1P[6] (6.75%). The rare strain reported were G1P[9]; P[11] strain was detected in combination with G1, G2, and G12. These data emphasized G12 is the second most predominant strain circulating among Northern Indian children highlights the needs for inclusion in the future polyvalent vaccine to break the burden of rotavirus infection.


Subject(s)
Population Surveillance , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Child, Preschool , Female , Genotype , Humans , India/epidemiology , Infant , Male , Phylogeny , Seasons , Time Factors
14.
Front Pharmacol ; 9: 23, 2018.
Article in English | MEDLINE | ID: mdl-29441016

ABSTRACT

Modern diets containing high quantities of salt and cholesterol have exhibited to cause a considerable effect on our health. Such diets, when consumed in the long term, have also shown to be a precursor to several disorders such as the metabolic disorder and consequently, various other diseases, including cognitive deficits. In the present study, we used a high salt and cholesterol diet (HSCD) to induce cognitive impairment in rats and also investigated the pharmacological action of tannins enriched fractions of Emblica officinalis (EOT) - a fruit that has been traditionally used for the treatment of numerous disorders for centuries. Significant alterations in MDA, GSH, TBARS, GPx, mitochondrial ATP, and mitochondrial membrane potential levels were observed in rats fed HSCD, which indicated presence of oxidative stress. Moreover, classic signs of cognitive impairment and deficits in spatial learning and memory were observed in the neurobehavioral tests. E. officinalis tannins exhibited good affinity to Nrf2 receptors in in silico studies, significantly reversed the changes in the aforementioned biomarkers of oxidative stress which were altered in the model group, as well as improved the performance of rats in Morris water maze task. Our results also reflected that EOT supplementation significantly increased the expression of Nrf2 in the CA1 region of hippocampus and cortex. Additionally, TUNEL assay indicated that EOT supplementation led to reversal of DNA fragmentation and apoptosis caused by HSCD. Immunohistochemical analysis and western blot further revealed a surge in the nuclear location of Nrf2. Through our study, we have demonstrated that cognitive impairment can be caused in rats via HSCD as a result of the oxidative stress induced by the same. Additionally, we have investigated a novel mechanism of action for EOT (which strongly suggests to be via the Nrf2-ARE pathway) and demonstrated that it has the potential to be used in the treatment of cognitive impairment.

15.
Inflammopharmacology ; 26(1): 147-156, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29335826

ABSTRACT

Metabolic disorders are closely associated with dietary habits and seem to be related to neuroinflammation and neurodegenerative disease in humans. Emblica officinalis (EOT) fruits not only have good nutritional value but also have excellent therapeutic potential. We used a tannins-enriched fraction of EOT fruit with the expectation of controlling diet-induced neuroinflammation and cognitive impairment in rats. A high-salt and cholesterol diet (HSCD) was used to induce neuroinflammation and cognitive impairment in rats. The diet of the rats was then supplemented with EOT (100 and 200 mg/kg b.w.) for 7 weeks. In order to evaluate the neuroprotective effects of EOT; in silico study, neurobehavioral tests, biochemical analyses, and immunohistochemical studies were performed. In silico study of p50 (NF-κB1) receptors with emblicanin (the main constituent of EOT) suggests that EOT has binds to NF-κB. EOT treatment reversed the HSCD-induced behavioral and memory disturbances in a step-down-type passive avoidance test. EOT treatment also inhibited HSCD-induced NF-κB upstream signaling, including the release of Th1, such as TNF-α, and downstream signaling Th2, such as IL-10, by flow cytometer. In addition, EOT treatment attentuated the HSCD-induced increase in the level of cognitive impairment markers, such as amyloid ß. Furthermore, immunohistochemical results demonstrated that EOT modulated neuronal cell death by inhibiting the overexpression of NF-kB in brain. This study confirms that EOT may be a promising therapy in ameliorating the neurotoxicity of HSCD; however further studies are warranted to elucidate the exact mechanism of action of EOT.


Subject(s)
Cognitive Dysfunction/drug therapy , NF-kappa B/metabolism , Phyllanthus emblica/chemistry , Tannins/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Cholesterol/adverse effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Diet/adverse effects , Female , Fruit/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Rats , Rats, Wistar
16.
Neurochem Res ; 42(8): 2404-2416, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28417263

ABSTRACT

Recent attention is focused on the impact of diet on health and mental well-being. High-salt and cholesterol diet (HSCD) is known to be associated with neuroinflammation which is the predominant factor for neurodegenerative disease like Alzheimer disease (AD). In the present study, we examined the neuroprotective potential of rosuvastatin, an HMG-CoA reductase inhibitor against HSCD induced neuroinflammation and cognitive impairment. Our results demonstrated that HSCD-induced cognitive impairment as determined by Morris water maze (MWM) task. HSCD also activated nuclear factor kappaB (NF-kB) signaling pathway. The cytokine response was measured using a cytometric bead-based assay quantified by flow cytometry. Treatment with rosuvastatin decreased the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and increased interleukin-10 (IL-10) in a dose-dependent manner. Our results also demonstrated that the rosuvastatin modulates neuronal cell death by inhibiting the overexpression of NF-kB in the CA1 region of hippocampus. In addition, molecular docking study of rosuvastatin indicated high affinity and tighter binding capacity for the active site of the NF-kB. These results suggest that HSCD-triggered inflammatory response and cognitive impairment may be associated with NF-κB signaling pathway. Therefore, treatment with rosuvastatin could be a potential new therapeutic strategy for sporadic dementia of AD.


Subject(s)
Cholesterol, Dietary/adverse effects , Cognitive Dysfunction/metabolism , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Rosuvastatin Calcium/therapeutic use , Sodium Chloride, Dietary/adverse effects , Animals , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/etiology , Inflammation/metabolism , Inflammation/prevention & control , Inflammation Mediators/antagonists & inhibitors , Maze Learning/drug effects , Maze Learning/physiology , Molecular Docking Simulation/methods , NF-kappa B/antagonists & inhibitors , Rats , Rats, Wistar , Rosuvastatin Calcium/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
17.
Drug Des Devel Ther ; 10: 3529-3543, 2016.
Article in English | MEDLINE | ID: mdl-27826185

ABSTRACT

This article reports on the design, synthesis, and pharmacological activity of a new series of hybrid pyrazole analogues: 5a-5u. Among the series 5a-5u, the compounds 5u and 5s exhibited potent anti-inflammatory activity of 80.63% and 78.09% and inhibition of 80.87% and 76.56% compared with the standard drug ibuprofen, which showed 81.32% and 79.23% inhibition after 3 and 4 hours, respectively. On the basis of in vivo studies, 12 compounds were selected for assessment of their in vitro inhibitory action against COX1/2 and TNFα. The compounds 5u and 5s showed high COX2-inhibitory activity, with half-maximal inhibitory concentrations of 1.79 and 2.51 µM and selectivity index values of 72.73 and 65.75, respectively, comparable to celecoxib (selectivity index =78.06). These selected compounds were also tested for TNFα, cytotoxicity, and ulcerogenicity. Docking studies were also carried out to determine possible interactions of the potent compounds (5u and 5s), which also showed high docking scores of -12.907 and -12.24 compared to celecoxib, with a -9.924 docking score. These selective COX2 inhibitors were docked into the active site of COX2, and showed the same orientation and binding mode to that of celecoxib (selective COX2 inhibitor). Docking studies also showed that the SO2NH2 of 5u and 5s is inserted deep inside the selective pocket of the COX2-active site and formed a hydrogen-bond interaction with His90, Arg513, Phe518, Ser353, Gln192, and Ile517, which was further validated by superimposed docked pose with celecoxib.


Subject(s)
Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/chemistry , Ibuprofen/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/therapeutic use , Analgesics/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclooxygenase 2 Inhibitors/chemistry , Hydrogen Bonding , Ibuprofen/chemistry , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemistry , Structure-Activity Relationship
18.
PLoS Negl Trop Dis ; 10(10): e0005011, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27776125

ABSTRACT

BACKGROUND: The therapy of visceral leishmaniasis (VL) is limited by resistance, toxicity and decreased bioavailability of the existing drugs coupled with dramatic increase in HIV-co-infection, non-availability of vaccines and down regulation of cell-mediated immunity (CMI). Thus, we envisaged combating the problem with plant-derived antileishmanial drug that could concomitantly mitigate the immune suppression of the infected hosts. Several plant-derived compounds have been found to exert leishmanicidal activity via immunomodulation. In this direction, we investigated the antileishmanial activity of eugenol emulsion (EE), complemented with its immunomodulatory and therapeutic efficacy in murine model of VL. METHODOLOGY/PRINCIPAL FINDINGS: Oil-in-water emulsion of eugenol (EE) was prepared and size measured by dynamic light scattering (DLS). EE exhibited significant leishmanicidal activity with 50% inhibitory concentration of 8.43±0.96 µg ml-1 and 5.05±1.72 µg ml─1, respectively against the promastigotes and intracellular amastigotes of Leishmania donovani. For in vivo effectiveness, EE was administered intraperitoneally (25, 50 and 75 mg/kg b.w./day for 10 days) to 8 week-infected BALB/c mice. The cytotoxicity of EE was assessed in RAW 264.7 macrophages as well as in naive mice. EE induced a significant drop in hepatic and splenic parasite burdens as well as diminution in spleen and liver weights 10 days post-treatment, with augmentation of 24h-delayed type hypersensitivity (DTH) response and high IgG2a:IgG1, mirroring induction of CMI. Enhanced IFN-γ and IL-2 levels, with fall in disease-associated Th2 cytokines (IL-4 and IL-10) detected by flow cytometric bead-based array, substantiated the Th1 immune signature. Lymphoproliferation and nitric oxide release were significantly elevated upon antigen revoke in vitro. The immune-stimulatory activity of EE was further corroborated by expansion of IFN-γ producing CD4+ and CD8+ splenic T lymphocytes and up-regulation of CD80 and CD86 on peritoneal macrophages. EE treated groups exhibited induction of CD8+ central memory T cells as evidenced from CD62L and CD44 expression. No biochemical alterations in hepatic and renal enzymes were observed. CONCLUSIONS: Our results demonstrate antileishmanial activity of EE, potentiated by Th1 immunostimulation without adverse side effects. The Th1 immune polarizing effect may help to alleviate the depressed CMI and hence complement the leishmanicidal activity.


Subject(s)
Antiprotozoal Agents/therapeutic use , Eugenol/therapeutic use , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/therapy , Animals , Antibodies, Protozoan/blood , Cell Line , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Emulsions , Eugenol/adverse effects , Eugenol/chemistry , Eugenol/pharmacology , Female , Hypersensitivity, Delayed , Immunity, Cellular , Immunomodulation , Injections, Intraperitoneal , Interleukin-10/blood , Interleukin-10/genetics , Interleukin-2/blood , Interleukin-2/genetics , Interleukin-4/blood , Interleukin-4/genetics , Leishmania donovani/drug effects , Leishmaniasis, Visceral/parasitology , Liver/parasitology , Lymphocyte Activation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Spleen/parasitology
19.
Front Microbiol ; 7: 1379, 2016.
Article in English | MEDLINE | ID: mdl-27635124

ABSTRACT

Development of new therapeutic approach to treat leishmaniasis has become a priority. In the present study, the antileishmanial effect of ß-nitrostyrenes was investigated against in vitro promastigotes and amastigotes. A series of ß-nitrostyrenes have been synthesized by using Henry reaction and were evaluated for their antimicrobial activities by broth microdilution assay and in vitro antileishmanial activities against Leishmania donovani promastigotes by following standard guidelines. The most active compounds were futher evaluated for their in vitro antileishmanial activities against intracellular amastigotes. Among the tested ß-nitrostyrenes, compounds 7, 8, 9, 12, and 17 exhibited potential activities (MICs range, 0.25-8 µg/mL) against clinically significant human pathogenic fungi. However, the microbactericidal concentrations (MBCs) and the microfungicidal concentrations (MFCs) were found to be either similar or only two-fold greater than the MICs. Anti-leishmanial results demonstrated that compounds 9, 12, 14, and 18 were found to be most active among the tested samples and exhibited 50% inhibitory concentration (IC50) by 23.40 ± 0.71, 37.83 ± 3.74, 40.50 ± 1.47, 55.66 ± 2.84 nM against L. donovani promastigotes and 30.5 ± 3.42, 21.46 ± 0.96, 26.43 ± 2.71, and 61.63 ± 8.02 nM respectively against intracellular L. donovani promastigotes amastigotes respectively which are comparable with standard AmB (19.60 ± 1.71 nM against promastigotes and 27.83 ± 3.26 nM against amastigotes). Compounds 9, 12, 14, and 18 were found to have potent in vitro leishmanicidal activity against L. donovani and found to be non-toxic against mammalian macrophages even at a concentration of 25 µM. Nitric oxide (NO) estimation studies reveals that these compounds are moderately inducing NO levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...