Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 31(24): 2733-2747, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32997572

ABSTRACT

How cells regulate microtubule cross-linking activity to control the rate and duration of spindle elongation during anaphase is poorly understood. In this study, we test the hypothesis that PRC1/Ase1 proteins use distinct microtubule-binding domains to control the spindle elongation rate. Using the budding yeast Ase1, we identify unique contributions for the spectrin and carboxy-terminal domains during different phases of spindle elongation. We show that the spectrin domain uses conserved basic residues to promote the recruitment of Ase1 to the midzone before anaphase onset and slow spindle elongation during early anaphase. In contrast, a partial Ase1 carboxy-terminal truncation fails to form a stable midzone in late anaphase, produces higher elongation rates after early anaphase, and exhibits frequent spindle collapses. We find that the carboxy-terminal domain interacts with the plus-end tracking protein EB1/Bim1 and recruits Bim1 to the midzone to maintain midzone length. Overall, our results suggest that the Ase1 domains provide cells with a modular system to tune midzone activity and control elongation rates.


Subject(s)
Cell Cycle Proteins/metabolism , Microtubule Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/metabolism , Anaphase/physiology , Cell Cycle/physiology , Cell Cycle Proteins/physiology , Chromosome Segregation/physiology , Microtubule Proteins/physiology , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomycetales/metabolism , Spindle Apparatus/physiology
2.
J Proteomics ; 207: 103467, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31351147

ABSTRACT

The mating-specific yeast Gα controls pheromone signaling by sequestering Gßγ and by regulating the Fus3 MAP kinase. Disrupting Gα-Fus3 interaction leads to severe defects in chemotropism. Because Gα concentrates at the chemotropic growth site where Fus3 is required for the phosphorylation of two known targets, we screened for additional proteins whose phosphorylation depends on pheromone stimulation and Gα-Fus3 interaction. Using a mutant form of Gα severely defective in Fus3-binding, GαDSD, and quantitative mass spectrometry, fourteen proteins were identified as potential targets of Gα-recruited Fus3, ten of which were previously implicated in cell polarity and morphogenesis. To explore the biological relevance of these findings, we focused on the Spa2 polarisome protein, which was hypophosphorylated on multiple serine residues in pheromone-treated GαDSD cells. Six sites were mutagenized to create the Spa26XSA mutant protein. Spa26XSA exhibited increased affinity for Fus3, consistent with a kinase-substrate interaction, and Spa26XSA cells exhibited dramatic defects in gradient sensing and zygote formation. These results suggest that Gα promotes the phosphorylation of Spa2 by Fus3 at the cortex of pheromone-stimulated cells, and that this mechanism plays a role in chemotropism. How the Gα-Fus3 signaling hub affects the other putative targets identified here has yet to be determined. SIGNIFICANCE: Previously, interaction between the G alpha protein, Gpa1, and the MAPK of the pheromone response pathway, Fus3, was shown to be important for efficient sensing of the pheromone gradient and for the maintenance of cell polarity during mating. Here we show that the underlying molecular mechanisms involve the phosphorylation of specific cortical targets of Gpa1/Fus3. These have been identified by quantitative phosphoproteomics using a mutant of Gpa1, which is defective in interacting with Fus3. One of these targets is the polarisome protein Spa2. Alanine substitution of the Spa2 phosphorylation sites targeted by Gpa1/Fus3 lead to a dramatic defect in pheromone gradient sensing and zygote formation. These results reveal how the G alpha protein and the MAPK control cell polarity in a prototypical model system. Our results have wider significance as similar mechanisms exist in higher eukaryotes and are involved in important biological such as neuron development, immunity, and cancer cell metastasis.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , MAP Kinase Signaling System , Mating Factor/metabolism , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Substitution , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , GTP-Binding Protein alpha Subunits/genetics , Mating Factor/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
Cell Logist ; 7(2): e1314237, 2017.
Article in English | MEDLINE | ID: mdl-28702274

ABSTRACT

The ability of cells to direct their movement and growth in response to shallow chemical gradients is essential in the life cycles of all eukaryotic organisms. The signaling mechanisms underlying directional sensing in chemotactic cells have been well studied; however, relatively little is known about how chemotropic cells interpret chemical gradients. Recent studies of chemotropism in budding and fission yeast have revealed 2 quite different mechanisms-biased wandering of the polarity complex, and differential internalization of the receptor and G protein. Each of these mechanisms has been proposed to play a key role in decoding mating pheromone gradients. Here we explore how they may work together as 2 essential components of one gradient sensing machine.

4.
Sci Signal ; 9(423): ra38, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27072657

ABSTRACT

Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gßγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gßγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Receptors, Pheromone/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Algorithms , Casein Kinase I/genetics , Casein Kinase I/metabolism , Cell Membrane/metabolism , Cell Polarity , Chemotaxis , Computer Simulation , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Models, Biological , Pheromones/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Receptors, Mating Factor/genetics , Receptors, Mating Factor/metabolism , Receptors, Pheromone/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Time-Lapse Imaging/methods
5.
Article in English | MEDLINE | ID: mdl-25570171

ABSTRACT

Cell polarization, the generation of cellular asymmetries, is a fundamental biological process. Polarity of different molecules can arise through several mechanisms. Among these, internalization has been shown to play an important role in the polarization of cell surface receptors. The internalization of cell surface receptors can be upregulated upon ligand binding. Additional regulatory mechanism can downregulate the internalization process. Here we describe a general model, which incorporates these two opposing processes, to study the role of internalization in the establishment of cell polarity. We find that the competition between these two processes is sufficient to induce receptor polarization. Our results show that regulated internalization provides additional regulation on polarization as well. In addition, we discuss applications of our model to the yeast system, which shows the capability and potential of the model.


Subject(s)
Cell Polarity , Endocytosis , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Polarity/drug effects , Endocytosis/drug effects , Ligands , Models, Biological , Pheromones/pharmacology , Receptors, Pheromone/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/metabolism
6.
Mol Biol Cell ; 21(10): 1737-52, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20335504

ABSTRACT

In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into "crescents" that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Galpha and Gbeta proteins and that the changes in G protein localization depend on receptor internalization and receptor-Galpha coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.


Subject(s)
Actins/metabolism , Pheromones/metabolism , Receptors, Pheromone/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Actins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Chemotaxis/drug effects , Chemotaxis/genetics , Eukaryota , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mutation/drug effects , Pheromones/genetics , Pheromones/pharmacology , Protein Binding/genetics , Protein Transport/genetics , Receptors, Pheromone/metabolism , Saccharomyces cerevisiae/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...