Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Bioorg Khim ; 40(2): 196-202, 2014.
Article in Russian | MEDLINE | ID: mdl-25895339

ABSTRACT

Antiviral activity of TiO2 * PL * DNA nanobiocomposites was studied on the MDCK cell culture infected with influenza A virus (subtype H3N2). DNA fragments in the nanocomposites are electrostatically bound to titanium dioxide nanoparticles pre-covered with polylysine. It was shown that TiO2 * PL * DNA(v3') nanocomposite bearing the DNA(v3') fragment targeted to the 3'-end of the noncoding region of segment 5 of viral RNA specifically inhibited the virus reproduction with the efficiency of 99.8 and 99.9% (or by factors of~400 and 1000) at a low concentration of DNA(v3') in nanocomposite (0.1 and 0.2 µM, respectively). The TiO2 * PL * DNA(r) nanocomposite containing oligonucleotide noncomplementary to viral RNA or the oligonucleotide unbound to the nanoparticles show very low antiviral activity (inhibition by factors of~3.5 and 1.3, respectively).


Subject(s)
Influenza A Virus, H3N2 Subtype/drug effects , Nanoparticles/administration & dosage , Oligonucleotides/administration & dosage , Titanium/administration & dosage , Antiviral Agents , Cell Line , Humans , Influenza A Virus, H3N2 Subtype/pathogenicity , Nanoparticles/chemistry , Oligonucleotides/chemistry , Polylysine/chemistry , RNA, Viral/drug effects , Static Electricity , Titanium/chemistry
2.
ScientificWorldJournal ; 2012: 498345, 2012.
Article in English | MEDLINE | ID: mdl-22623903

ABSTRACT

To study the effect of nanoscale titanium dioxide (TiO(2)) on cell responses, we synthesized four modifications of the TiO(2) (amorphous, anatase, brookite, and rutile) capable of keeping their physicochemical characteristics in a cell culture medium. The modifications of nanoscale TiO(2) were obtained by hydrolysis of TiCl(4) and Ti(i-OC(3)H(7))(4) (TIP) upon variation of the synthesis conditions; their textural, morphological, structural, and dispersion characteristics were examined by a set of physicochemical methods: XRD, BET, SAXS, DLS, AFM, SEM, and HR-TEM. The effect of synthesis conditions (nature of precursor, pH, temperature, and addition of a complexing agent) on the structural-dispersion properties of TiO(2) nanoparticles was studied. The hydrolysis methods providing the preparation of amorphous, anatase, brookite, and rutile modifications of TiO(2) nanoparticles 3-5 nm in size were selected. Examination of different forms of TiO(2) nanoparticles interaction with MDCK cells by transmission electron microscopy of ultrathin sections revealed different cell responses after treatment with different crystalline modifications and amorphous form of TiO(2). The obtained results allowed us to conclude that direct contact of the nanoparticles with cell plasma membrane is the primary and critical step of their interaction and defines a subsequent response of the cell.


Subject(s)
Metal Nanoparticles/chemistry , Titanium/pharmacology , Animals , Cell Line , Cell Membrane/drug effects , Dogs , Kidney/cytology , Kidney/metabolism , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Scattering, Small Angle , X-Ray Diffraction
3.
Nanotechnol Russ ; 4(9): 732, 2009.
Article in English | MEDLINE | ID: mdl-32218897

ABSTRACT

In this study we examine the possibility that TiO2 nanoparticles and their conjugates can penetrate into cultivated cells without any special transfection procedures. Oligonucleotides and their derivates were conjugated with the TiO2 nanoparticles, which were obtained as colloidal solutions at a concentration of TiO2 0.3M by TiCl4 hydrolysis. The electronic microscopy of various cell cultures (KCT, Vero, and MDCK) treated with nanoparticle solutions (20 µg/µl) showed that nanoparticles could enter the cells and accumulate in the vacuoles and phagosomes and form inclusions in cytoplasm. Thus, we demonstrated the penetration of TiO2 nanoparticles and their oligonucleotide conjugates into intracellular space without any auxiliary operations. Most other researches used electroporation techniques for similar purposes [1, 2, 5].

SELECTION OF CITATIONS
SEARCH DETAIL
...