Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(11)2021 10 31.
Article in English | MEDLINE | ID: mdl-34831189

ABSTRACT

Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.


Subject(s)
Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Estrogen Receptor alpha/metabolism , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Enhancer Elements, Genetic/genetics , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Transcription, Genetic
2.
Nucleic Acids Res ; 45(13): e122, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28472340

ABSTRACT

Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets.


Subject(s)
Biomarkers, Tumor/genetics , Databases, Genetic/statistics & numerical data , Gene Expression Profiling/statistics & numerical data , Transcriptome/genetics , Biomarkers, Tumor/classification , Breast Neoplasms/classification , Breast Neoplasms/genetics , Cluster Analysis , Computational Biology , Female , Genome-Wide Association Study/statistics & numerical data , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/genetics , Multigene Family , Prognosis , Software
3.
Mol Cell Biol ; 32(19): 3823-37, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22826433

ABSTRACT

The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.


Subject(s)
Estradiol/analogs & derivatives , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/metabolism , Sumoylation/drug effects , Cell Line, Tumor , Estradiol/chemistry , Estradiol/pharmacology , Estrogen Antagonists/chemistry , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Fulvestrant , HEK293 Cells , Hep G2 Cells , Humans , Molecular Docking Simulation , Point Mutation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...