Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448400

ABSTRACT

This paper evaluates the performance of Nafion 211 at elevated temperatures up to 120 °C using an experimentally validated model. Increasing the fuel cell operating temperature could have many key benefits at the cell and system levels. However, current research excludes this due to issues with membrane durability. Modelling is used to investigate complex systems to gain further information that is challenging to obtain experimentally. Nafion 211 is shown to have some interesting characteristics at elevated temperatures previously unreported, the first of which is that the highest performance reported is at 100 °C and 100% relative humidity. The model was trained on the experimental data and then used to predict the behaviour in the membrane region to understand how the fuel cell performs at varying temperatures and pressures. The model showed that the best membrane performance comes from a 100 °C operating temperature, with much better performance yielded from a higher pressure of 3 bar.

2.
Nanotechnology ; 31(22): 225401, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32066126

ABSTRACT

Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs) by replacing platinum at the cathode. We previously developed unique nitrogen-doped carbon foams by template-free pyrolysis of alkoxide powders synthesized using a high temperature and high pressure solvothermal reaction. These were shown to be effective ORR electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol which is carried out at ambient temperature and pressure, enabling us to safely increase the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 m2 g-1, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the electrochemical performance. This work highlights the importance of the properties of the carbon support in the design of Pt-free electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...