Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Saf ; 18(4): 547-554, 2023.
Article in English | MEDLINE | ID: mdl-36239716

ABSTRACT

BACKGROUND: Warfarin (WAR) is an anticoagulant with a narrow therapeutic index and is principally metabolized by CYP3A4 and CYP2C9 enzymes. The inhibitors of these enzymes may alter the systemic exposure to WAR. Quercetin (QUE), a bioflavonoid, may modify the bioavailability of drugs used concurrently by inhibiting CYP3A4, CYP2C8, CYP2C9, CYP1A2, and Pglycoprotein (P-gp). OBJECTIVE: The current study scrutinized the influence of QUE on WAR pharmacokinetics in rats. METHOD: QUE was orally administered to animals for 14 consecutive days, followed by WAR as a single oral dose on the 15th day in the pre-treatment group. The co-administration group received a single dose of QUE and WAR concomitantly. Only carboxymethylcellulose (CMC) 0.5% was administered as a vehicle to control group. RESULTS: In the pre-treated group, WAR's Cmax was increased by 30.43%, AUC0-∞ by 62.94%, and t1/2 by 10.54%, while Cl decreased by 41.35%, relative to control. In co-administered animals, WAR's Cmax increased by 10.98%, AUC0-∞ by 20.20%, and t1/2 by 8.87%, while Cl declined by 16.40%. CONCLUSION: QUE alters the pharmacokinetics of WAR, warranting possibly WAR dose adjustment after confirmatory clinical investigations, specifically in patients with thrombotic disorders and a pre-treatment history of QUE or its product.


Subject(s)
Cytochrome P-450 CYP3A , Warfarin , Rats , Animals , Warfarin/pharmacology , Cytochrome P-450 CYP3A/metabolism , Quercetin/pharmacology , Cytochrome P-450 CYP2C9/metabolism , Anticoagulants/pharmacology , Drug Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...