Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cancer Biol ; 74: 24-44, 2021 09.
Article in English | MEDLINE | ID: mdl-33545339

ABSTRACT

Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.


Subject(s)
Drug Resistance, Neoplasm/physiology , Extracellular Vesicles/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/physiology , Animals , Cell Communication/physiology , Cellular Reprogramming/physiology , Extracellular Vesicles/pathology , Humans , Stromal Cells/metabolism , Stromal Cells/pathology
2.
Genome Biol ; 19(1): 62, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843790

ABSTRACT

BACKGROUND: While CRISPR-Cas systems hold tremendous potential for engineering the human genome, it is unclear how well each system performs against one another in both non-homologous end joining (NHEJ)-mediated and homology-directed repair (HDR)-mediated genome editing. RESULTS: We systematically compare five different CRISPR-Cas systems in human cells by targeting 90 sites in genes with varying expression levels. For a fair comparison, we select sites that are either perfectly matched or have overlapping seed regions for Cas9 and Cpf1. Besides observing a trade-off between cleavage efficiency and target specificity for these natural endonucleases, we find that the editing activities of the smaller Cas9 enzymes from Staphylococcus aureus (SaCas9) and Neisseria meningitidis (NmCas9) are less affected by gene expression than the other larger Cas proteins. Notably, the Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) are able to perform precise gene targeting efficiently across multiple genomic loci using single-stranded oligodeoxynucleotide (ssODN) donor templates with homology arms as short as 17 nucleotides. Strikingly, the two Cpf1 nucleases exhibit a preference for ssODNs of the non-target strand sequence, while the popular Cas9 enzyme from Streptococcus pyogenes (SpCas9) exhibits a preference for ssODNs of the target strand sequence instead. Additionally, we find that the HDR efficiencies of Cpf1 and SpCas9 can be further improved by using asymmetric donors with longer arms 5' of the desired DNA changes. CONCLUSIONS: Our work delineates design parameters for each CRISPR-Cas system and will serve as a useful reference for future genome engineering studies.


Subject(s)
CRISPR-Cas Systems , Gene Editing , DNA End-Joining Repair , DNA Repair , DNA, Single-Stranded/metabolism , Humans , Oligodeoxyribonucleotides , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...