Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1195566, 2023.
Article in English | MEDLINE | ID: mdl-37292145

ABSTRACT

Quantitative trait loci (QTL) is one of the most important steps in marker-assisted selection. Few studies have validated quantitative trait loci for marker-assisted selection of yield traits under drought stress conditions in wheat. A set of 138 highly diverse wheat genotypes were tested under normal and drought stress conditions for 2 years. Plant height, heading date, spike length, grain number per spike, grain yield per spike, and 1000-kernel weight were scored. High genetic variation was found among genotypes in all traits scored under both conditions in the 2 years. The same panel was genotyped using a diversity-array technology (DArT) marker, and a genome-wide association study was performed to find alleles associated with yield traits under all conditions. A set of 191 significant DArT markers were identified in this study. The results of the genome-wide association study revealed eight common markers in wheat that were significantly associated with the same traits under both conditions in the 2 years. Out of the eight markers, seven were located on the D genome except one marker. Four validated markers were located on the 3D chromosome and found in complete linkage disequilibrium. Moreover, these four markers were significantly associated with the heading date under both conditions and the grain yield per spike under drought stress condition in the 2 years. This high-linkage disequilibrium genomic region was located within the TraesCS3D02G002400 gene model. Furthermore, of the eight validated markers, seven were previously reported to be associated with yield traits under normal and drought conditions. The results of this study provided very promising DArT markers that can be used for marker-assisted selection to genetically improve yield traits under normal and drought conditions.

2.
Front Plant Sci ; 7: 795, 2016.
Article in English | MEDLINE | ID: mdl-27375650

ABSTRACT

This study evaluates the potential for adaptability and tolerance of wheat genotypes (G) to an arid environment. We examined the influence of drought stress (DS) (100, 75, and 50% field capacity), planting times (PT) (16-November, 01-December, 16-December and 01-January), and G (Yocoro Rojo, FKAU-10, Faisalabad-08, and Galaxy L-7096) on phenological development, growth indices, grain yield, and water use efficiency of drip-irrigated wheat. Development measured at five phenological growth stages (GS) (tillering, jointing, booting, heading, and maturity) and growth indices 30, 45, 60, and 75 days after sowing (DAS) were also correlated with final grain yield. Tillering occurred earlier in DS plots, to a maximum of 31 days. Days to complete 50% heading and physiological crop maturity were the most susceptible GS that denoted 31-72% reduction in number of days to complete these GS at severe DS. Wheat G grown with severe DS had the shortest grain filling duration. Genotype Fsd-08 presented greater adaptability to studied arid climate and recorded 31, 35, and 38% longer grain filling period as compared with rest of the G at 100-50% field capacity respectively. December sowing mitigated the drought and delayed planting effects by producing superior growth and yield (2162 kg ha(-1)) at severe DS. Genotypes Fsd-08 and L-7096 attained the minimum plant height (36 cm) and the shortest growth cycle (76 days) for January planting with 50% field capacity. At severe DS leaf area index, dry matter accumulation, crop growth rate and net assimilation rate were decreased by 67, 57, 34, and 38% as compared to non-stressed plots. Genotypes Fsd-08 and F-10 were the superior ones and secured 14-17% higher grain yield than genotype YR for severely stressed plots. The correlation between crop growth indices and grain yield depicted the highest value (0.58-0.71) at 60-75 DAS. So the major contribution of these growth indices toward grain yield was at the start of reproductive phase. It's clear that booting and grain filling are the most sensitive GS that are severely affected by both drought and delay in planting.

SELECTION OF CITATIONS
SEARCH DETAIL
...