Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Chem ; 14(4): 377-383, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35102321

ABSTRACT

Borophene, a crystalline monolayer boron sheet, has been predicted to adopt a variety of structures-owing to its high polymorphism-that may possess physical properties that could serve in flexible electronics, energy storage and catalysis. Several borophene polymorphs have been synthesized on noble metal surfaces but for device fabrication larger single-crystal domains are typically needed with, ideally, weak borophene-substrate interactions. Here we report the synthesis of borophene on a square-lattice Cu(100) surface and show that incommensurate coordination reduces the borophene-substrate interactions and also leads to a borophene polymorph different from those previous reported. Micrometre-scale single-crystal domains formed as isolated faceted islands or merged together to achieve full monolayer coverage. The crystal structure of this phase has ten boron atoms and two hexagonal vacancies in its unit cell. First-principles calculations indicate that charge transfer, rather than covalent bonding, binds this two-dimensional boron to the Cu(100) surface. The electronic band structure of this material features multiple anisotropic tilted Dirac cones.

2.
Nat Mater ; 20(11): 1462-1468, 2021 11.
Article in English | MEDLINE | ID: mdl-33941911

ABSTRACT

This Perspective addresses the design, creation, characterization and control of synthetic quantum materials with strong electronic correlations. We show how emerging synergies between theoretical/computational approaches and materials design/experimental probes are driving recent advances in the discovery, understanding and control of new electronic behaviour in materials systems with interesting and potentially technologically important properties. The focus here is on transition metal oxides, where electronic correlations lead to a myriad of functional properties including superconductivity, magnetism, Mott transitions, multiferroicity and emergent behaviour at picoscale-designed interfaces. Current opportunities and challenges are also addressed, including possible new discoveries of non-equilibrium phenomena and optical control of correlated quantum phases of transition metal oxides.


Subject(s)
Oxides , Superconductivity , Electronics
3.
Nanoscale ; 11(44): 21340-21353, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31670730

ABSTRACT

Two-dimensional (2D) materials can have multiple phases close in energy but with distinct properties, with the phases that form during growth dependent on experimental conditions and the growth substrate. Here, the competition between 2D van der Waals (VDW) silica and 2D Ni silicate phases on NixPd1-x(111) alloy substrates was systematically investigated experimentally as a function of Si surface coverage, annealing time and temperature, O2 partial pressure, and substrate composition and the results were compared with thermodynamic predictions based on density functional theory (DFT) calculations and thermochemical data for O2. Experimentally, 2D Ni silicate was exclusively observed at higher O2 pressures (∼10-6 Torr), higher annealing temperatures (1000 K), and more prolonged annealing (10 min) if the substrate contained any Ni and for initial Si coverages up to 2 monolayers. In contrast, decreasing the O2 pressure to ∼10-8 Torr and restricting the annealing temperature and time enabled 2D VDW silica formation. Amorphous 2D VDW silica was observed even when the substrate composition was tuned to lattice match crystalline 2D VDW silica. The trend of decreased O2 pressure favoring 2D VDW silica was consistent with the theoretical predictions; however, theory also suggested that sufficient Si coverage could avoid Ni silicate formation. The effect of epitaxial strain on 2D Ni silicate was investigated by modifying the solid solution alloy substrate composition. It was found that 2D Ni silicate will stretch to match the substrate lattice constant up to 1.12% tensile strain. When the lattice mismatch was over 1.40%, incommensurate crystalline domains were observed, indicating relaxation of the overlayer to its favored lattice constant. The limited epitaxial strain that could be applied was attributed to a combination of the 2D silicate stiffness, the insensitivity of its bonding to the substrate to its alignment with the substrate, and its lack of accessible structural rearrangements that can reduce the strain energy. The results demonstrate how the resulting 2D material can be manipulated through the growth conditions and how a solid solution alloy substrate can be used to maximize the epitaxial strain imparted to the 2D system.

4.
Phys Rev Lett ; 123(11): 117201, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31573260

ABSTRACT

Through a combination of experimental measurements and theoretical modeling, we describe a strongly orbital-polarized insulating ground state in an (LaTiO_{3})_{2}/(LaCoO_{3})_{2} oxide heterostructure. X-ray absorption spectra and ab initio calculations show that an electron is transferred from the titanate to the cobaltate layers. The charge transfer, accompanied by a large octahedral distortion, induces a substantial orbital polarization in the cobaltate layer of a size unattainable via epitaxial strain alone. The asymmetry between in-plane and out-of-plane orbital occupancies in the high-spin cobaltate layer is predicted by theory and observed through x-ray linear dichroism experiments. Manipulating orbital configurations using interfacial coupling within heterostructures promises exciting ground-state engineering for realizing new emergent electronic phases in metal oxide superlattices.

5.
Phys Chem Chem Phys ; 21(23): 12150-12162, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31144707

ABSTRACT

We present a comprehensive first principles study of doped hafnia in order to understand the formation of ferroelectric orthorhombic[001] grains. Assuming that tetragonal grains are present during the early stages of growth, matching plane analysis shows that tetragonal[100] grains can transform into orthorhombic[001] during thermal annealing when they are laterally confined by other grains. We show that among 0%, 2% and 4% Si doping, 4% doping provides the best conditions for the tetragonal[100] → orthorhombic[001] transformation. This also holds for Al doping. We also show that for HfxZr1-xO2, where x = 1.00, 0.75, 0.50, 0.25, and 0.00, the value x = 0.50 provides the most favorable conditions for the desired transformation. In order for this transformation to be preferred over the tetragonal[100] → monoclinic[100] transformation, out-of-plane confinement also needs to be present, as supplied by a top electrode. Our findings illuminate the mechanism that causes ferroelectricity in hafnia-based films and provide an explanation for common experimental observations for the optimal ranges of doping in Si:HfO2, Al:HfO2 and HfxZr1-xO2. We also present model thin film heterostructure computations of Ir/HfO2/Ir stacks in order to isolate the interface effects, which we show to be significant.

6.
Nat Nanotechnol ; 14(1): 44-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30510278

ABSTRACT

Borophene, a theoretically proposed two-dimensional (2D) boron allotrope1-3, has attracted much attention4,5 as a candidate material platform for high-speed, transparent and flexible electronics6-9. It was recently synthesized, on Ag(111) substrates10,11, and studied by tunnelling and electron spectroscopy12. However, the exact crystal structure is still controversial, the nanometre-size single-crystal domains produced so far are too small for device fabrication and the structural tunability via substrate-dependent epitaxy is yet to be proven. We report on the synthesis of borophene monitored in situ by low-energy electron microscopy, diffraction and scanning tunnelling microscopy (STM) and modelled by ab initio theory. We resolved the crystal structure and phase diagram of borophene on Ag(111), but found that the domains remain nanoscale for all growth conditions. However, by growing borophene on Cu(111) surfaces, we obtained large single-crystal domains, up to 100 µm2 in size. The crystal structure is a novel triangular network with a concentration of hexagonal vacancies of η = 1/5. Our experimental data, together with first principles calculations, indicate charge-transfer coupling to the substrate without significant covalent bonding. Our work sets the stage for fabricating borophene-based devices and substantiates the idea of borophene as a model for development of artificial 2D materials.

7.
Inorg Chem ; 57(12): 7222-7238, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29863849

ABSTRACT

We investigate the (surface) bonding of a class of industrially and biologically important molecules in which the chemically active orbital is a 2 p electron lone pair located on an N or O atom bound via single bonds to H or alkyl groups. This class includes water, ammonia, alcohols, ethers, and amines. Using extensive density functional theory (DFT) calculations, we discover scaling relations (correlations) among molecular binding energies of different members of this class: the bonding energetics of a single member can be used as a descriptor for other members. We investigate the bonding mechanism for a representative (H2O) and find the most important physical surface properties that dictate the strength and nature of the bonding through a combination of covalent and noncovalent electrostatic effects. We describe the importance of surface intrinsic electrostatic, geometric, and mechanical properties in determining the extent of the lone-pair-surface interactions. We study systems including ionic materials in which the surface positive and negative centers create strong local surface electric fields, which polarize the dangling lone pair and lead to a strong "electrostatically driven bond". We emphasize the importance of noncovalent electrostatic effects and discuss why a fully covalent picture, common in the current first-principles literature on surface bonding of these molecules, is not adequate to correctly describe the bonding mechanism and energy trends. By pointing out a completely different mechanism (charge transfer) as the major factor for binding N- and O-containing unsaturated (radical) adsorbates, we explain why their binding energies can be tuned independently from those of the aforementioned species, having potential implications in scaling-driven catalyst discovery.

8.
Nano Lett ; 18(1): 241-246, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29244954

ABSTRACT

A single atomic layer of ZrO2 exhibits ferroelectric switching behavior when grown with an atomically abrupt interface on silicon. Hysteresis in capacitance-voltage measurements of a ZrO2 gate stack demonstrate that a reversible polarization of the ZrO2 interface structure couples to the carriers in the silicon. First-principles computations confirm the existence of multiple stable polarization states and the energy shift in the semiconductor electron states that result from switching between these states. This monolayer ferroelectric represents a new class of materials for achieving devices that transcend conventional complementary metal oxide semiconductor (CMOS) technology. Significantly, a single atomic layer ferroelectric allows for more aggressively scaled devices than bulk ferroelectrics, which currently need to be thicker than 5-10 nm to exhibit significant hysteretic behavior (Park, et al. Adv. Mater. 2015, 27, 1811).

9.
Nano Lett ; 18(1): 573-578, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29251937

ABSTRACT

Coherent and epitaxial interfaces permit the realization of electric field driven devices controlled by atomic-scale structural and electronic effects at interfaces. Compared to conventional field effect devices where channel conductivity is modulated by carrier density modification, the propagation of atomic-scale distortions across an interface can control the atomic scale bonding, interatomic electron tunneling rates and thus the mobility of the channel material. We use first-principles theory to design an atomically abrupt epitaxial perovskite heterostructure involving an oxide ferroelectric (PbZr0.2Ti0.8O3) and conducting oxide channel (LaNiO3) where coupling of polar atomic motions to structural distortions can induce large, reversible changes in the channel mobility. We fabricate and characterize the heterostructure and measure record values, larger than 1000%, for the conductivity modulation. Our results describe how purely interfacial effects can be engineered to deliver unique electronic device properties and large responses to external fields.

10.
Phys Rev Lett ; 119(6): 067004, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28949599

ABSTRACT

Recent observation of ∼10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO_{3}. The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase. But the angle sensitivity increases and the orbital differentiation decreases in the monolayer phase compared to the bulk phase. The correlations are more dependent on Hund's J than Hubbard U. The observed orbital selective incoherence to coherence crossover with temperature confirms the Hund's metallic nature of the monolayer FeSe. We also find electron doping by oxygen vacancies in SrTiO_{3} increases the correlation strength, especially in the d_{xy} orbital by reducing the Se-Fe-Se angle.

11.
J Phys Condens Matter ; 29(38): 385501, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28593935

ABSTRACT

The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

12.
Phys Chem Chem Phys ; 18(29): 19676-95, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27381676

ABSTRACT

The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields (e.g., temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NOx direct decomposition and SO2 oxidation into SO3. The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations.

13.
Phys Rev Lett ; 114(2): 026801, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25635555

ABSTRACT

We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

14.
Nano Lett ; 14(9): 4965-70, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25140410

ABSTRACT

The breaking of orbital degeneracy on a transition metal cation and the resulting unequal electronic occupations of these orbitals provide a powerful lever over electron density and spin ordering in metal oxides. Here, we use ab initio calculations to show that reversibly modulating the orbital populations on Mn atoms can be achieved at ferroelectric/manganite interfaces by the presence of ferroelectric polarization on the nanoscale. The change in orbital occupation can be as large as 10%, greatly exceeding that of bulk manganites. This reversible orbital splitting is in large part controlled by the propagation of ferroelectric polar displacements into the interfacial region, a structural motif absent in the bulk and unique to the interface. We use epitaxial thin film growth and scanning transmission electron microscopy to verify this key interfacial polar distortion and discuss the potential of reversible control of orbital polarization via nanoscale ferroelectrics.

15.
Nano Lett ; 14(6): 3388-94, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24779408

ABSTRACT

There is considerable interest in the controlled p-type and n-type doping of carbon nanotubes (CNT) for use in a range of important electronics applications, including the development of hybrid CNT/silicon (Si) photovoltaic devices. Here, we demonstrate that easy to handle metallocenes and related complexes can be used to both p-type and n-type dope single-walled carbon nanotube (SWNT) thin films, using a simple spin coating process. We report n-SWNT/p-Si photovoltaic devices that are >450 times more efficient than the best solar cells of this type currently reported and show that the performance of both our n-SWNT/p-Si and p-SWNT/n-Si devices is related to the doping level of the SWNT. Furthermore, we establish that the electronic structure of the metallocene or related molecule can be correlated to the doping level of the SWNT, which may provide the foundation for controlled doping of SWNT thin films in the future.

16.
Adv Mater ; 26(12): 1935-40, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24497382

ABSTRACT

Metallic electronic transport in nickelate heterostructures can be induced and confined to two dimensions (2D) by controlling the structural parameters of the nickel-oxygen planes.

17.
Nanoscale ; 5(15): 6893-900, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23783269

ABSTRACT

As hybrid nanomaterials have myriad of applications in modern technology, different functionalization strategies are being intensely sought for preparing nanocomposites with tunable properties and structures. Multi-Walled Carbon Nanotube (MWNT)/CdSe Quantum Dot (QD) heterostructures serve as an important example for an active component of solar cells. The attachment mechanism of CdSe QDs and MWNTs is known to affect the charge transfer between them and consequently to alter the efficiency of solar cell devices. In this study, we present a novel method that enables the exchange of some of the organic capping agents on the QDs with carboxyl functionalized MWNTs upon ultrasonication. This produces a ligand-free covalent attachment of the QDs to the MWNTs. EXAFS characterization reveals direct bond formation between the CdSe QDs and the MWNTs. The amount of oleic acid exchanged is quantified by temperature-programmed decomposition; the results indicate that roughly half of the oleic acid is removed from the QDs upon functionalized MWNT addition. Additionally, we characterize the optical and structural properties of the QD-MWNT heterostructures and investigate how these properties are affected by the attachment. The steady state photoluminescence response of QDs is completely quenched. The lifetime of the PL of the QDs measured with time resolved photoluminescence shows a significant decrease after they are covalently bonded to functionalized MWNTs, suggesting a fast charge transfer between QDs and MWNTs. Our theoretical calculations are consistent with and support these experimental findings and provide microscopic models for the QD binding mechanisms.

18.
Phys Rev Lett ; 110(18): 186402, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683225

ABSTRACT

We describe a general materials design approach that produces large orbital energy splittings (orbital polarization) in nickelate heterostructures, creating a two-dimensional single-band electronic surface at the Fermi energy. The resulting electronic structure mimics that of the high temperature cuprate superconductors. The two key ingredients are (i) the construction of atomic-scale distortions about the Ni site via charge transfer and internal electric fields, and (ii) the use of three-component (tricomponent) superlattices to break inversion symmetry. We use ab initio calculations to implement the approach, with experimental verification of the critical structural motif that enables the design to succeed.

20.
Adv Mater ; 22(26-27): 2919-38, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20432223

ABSTRACT

This review outlines developments in the growth of crystalline oxides on the ubiquitous silicon semiconductor platform. The overall goal of this endeavor is the integration of multifunctional complex oxides with advanced semiconductor technology. Oxide epitaxy in materials systems achieved through conventional deposition techniques is described first, followed by a description of the science and technology of using atomic layer-by-layer deposition with molecular beam epitaxy (MBE) to systematically construct the oxide-silicon interface. An interdisciplinary approach involving MBE, advanced real-space structural characterization, and first-principles theory has led to a detailed understanding of the process by which the interface between crystalline oxides and silicon forms, the resulting structure of the interface, and the link between structure and functionality. Potential applications in electronics and photonics are also discussed.


Subject(s)
Oxides/chemistry , Silicon/chemistry , Crystallization , Metals/chemistry , Semiconductors , Strontium/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...