Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mikrochim Acta ; 191(4): 191, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467910

ABSTRACT

The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized. The capillary coupling to ICP-MS was set up in conventional laboratory using Th and Sm as chemical analogues of Pu and Am. A dedicated method was developed to quantify online Th and Sm amounts immobilized on the monolithic capillaries, allowing to select the best monolith candidate poly(BMEP-co-EDMA)adp. By precisely adjusting the elemental composition in the loading solutions and applying the developed quantification method, the controlled immobilization of several Th:Sm molar ratios onto the monolith was successful. Finally, the capillary ICP-MS coupling was transposed in a glove box and by applying the strategy developed to design the monolithic support using Th and Sm, the immobilization of a 10.5 ± 0.2 (RSD = 2.3%, n = 3) Pu:Am molar ratio reflecting Pu ageing over 48 years was achieved in a controlled manner on poly(BMEP-co-EDMA)adp. Hence, the new affinity capillary monolithic support was validated, with only hundred nanograms or less of engaged radioelements and can be further exploited to precisely determine differential interactions of Pu and Am with targeted biomolecules in order to better anticipate the effect of Am on Pu biodistribution.

2.
Anal Bioanal Chem ; 415(24): 6107-6115, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37550545

ABSTRACT

A cyclic tetra-phosphorylated biomimetic peptide (pS1368) has been proposed as a promising starting structure to design a decorporating agent of uranyl (UO22+) due to its affinity being similar to that of osteopontin (OPN), a target UO22+ protein in vivo. The determination of this peptide's selectivity towards UO22+ in the presence of competing endogenous elements is also crucial to validate this hypothesis. In this context, the selectivity of pS1368 towards UO22+ in the presence of Ca2+, Cu2+ and Zn2+ was determined by applying the simultaneous coupling of hydrophilic interaction chromatography (HILIC) to electrospray ionization (ESI-MS) and inductively coupled plasma (ICP-MS) mass spectrometry. Sr2+ was used as Ca2+ simulant, providing less challenging ICP-MS measurements. The separation of the complexes by HILIC was first set up. The selectivity of pS1368 towards UO22+ was determined in the presence of Sr2+, by adding several proportions of the latter to UO2(pS1368). UO22+ was not displaced from UO2(pS1368) even in the presence of a ten-fold excess of Sr2+. The same approach has been undertaken to demonstrate the selectivity of pS1368 towards UO22+ in the presence of Cu2+, Zn2+ and Sr2+ as competing endogenous cations. Hence, we showed that pS1368 was selective towards UO22+ in the presence of Sr2+, but also in the presence of Cu2+ and Zn2+. This study highlights the performance of HILIC-ESI-MS/ICP-MS simultaneous coupling to assess the potential of molecules as decorporating agents of UO22+.

3.
Anal Chem ; 95(17): 6923-6930, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37071760

ABSTRACT

The 135Cs/137Cs isotopic ratio is a powerful tool for tracing the origin of radioactive contamination. Since the Fukushima accident, this ratio has been measured by mass spectrometry in several highly contaminated environmental matrices mainly collected near nuclear accident exclusion zones and former nuclear test areas. However, few data were reported at 137Cs environmental levels (<1 kBq kg-1). This is explained by the occurrence of analytical challenges related to the very low radiocesium content at the environmental level with the large presence of mass interferences, making 135Cs and 137Cs measurements difficult. To overcome these difficulties, a highly selective procedure for Cs extraction/separation combined with an efficient mass spectrometry measurement must be applied on a quantity of ca. 100 g of soil. In the current research, an innovative inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) method has been developed for the 135Cs/137Cs ratio measurement in low activity environmental samples. The use of ICP-MS/MS led to a powerful suppression of 135Cs and 137Cs interferences by introducing N2O, He, and, for the first time, NH3, into the collision-reaction cell. By adjusting the flow rates of these gases, the best compromise between a maximum signal in Cs and an effective interference elimination was achieved allowing a high Cs sensitivity of more than 1.105 cps/(ng g-1) and low background levels at m/z 135 and 137 lower than 0.6 cps. The accuracy of the developed method was successfully verified by analyzing two certified reference materials (IAEA-330 and IAEA-375) commonly used in the literature as validation samples and three sediment samples collected in the Niida River catchment (Japan) impacted by the Fukushima fallout.

4.
Anal Chim Acta ; 1242: 340773, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36657886

ABSTRACT

Several proteins have been identified in the past decades as targets of uranyl (UO22+) in vivo. However, the molecular interactions responsible for this affinity are still poorly known which requires the identification of the UO22+ coordination sites in these proteins. Biomimetic peptides are efficient chemical tools to characterize these sites. In this work, we developed a dedicated analytical method to determine the affinity of biomimetic, synthetic, multi-phosphorylated peptides for UO22+ and evaluate the effect of several structural parameters of these peptides on this affinity at physiological pH. The analytical strategy was based on the implementation of the simultaneous coupling of hydrophilic interaction chromatography (HILIC) with electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). An essential step had been devoted to the definition of the best separation conditions of UO22+ complexes formed with di-phosphorylated peptide isomers and also with peptides of different structure and degrees of phosphorylation. We performed the first separations of several sets of UO22+ complexes by HILIC ever reported in the literature. A dedicated method had then been developed for identifying the separated peptide complexes online by ESI-MS and simultaneously quantifying them by ICP-MS, based on uranium quantification using external calibration. Thus, the affinity of the peptides for UO22+ was determined and made it possible to demonstrate that (i) the increasing number of phosphorylated residues (pSer) promotes the affinity of the peptides for UO22+, (ii) the position of the pSer in the peptide backbone has very low impact on this affinity (iii) and finally the cyclic structure of the peptide favors the UO22+ complexation in comparison with the linear structure. These results are in agreement with those previously obtained by spectroscopic techniques, which allowed to validate the method. Through this approach, we obtained essential information to better understand the mechanisms of toxicity of UO22+ at the molecular level and to further develop selective decorporating agents by chelation.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Uranium , Biomimetics , Peptides/chemistry , Chromatography
5.
Neurotoxicology ; 82: 35-44, 2021 01.
Article in English | MEDLINE | ID: mdl-33166614

ABSTRACT

Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 µg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 µM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.


Subject(s)
Dopaminergic Neurons/metabolism , Uranium/metabolism , Cell Line , Dopaminergic Neurons/chemistry , Humans , Organometallic Compounds/metabolism , Spectrometry, X-Ray Emission , Synchrotrons , Uranium/analysis
6.
Talanta ; 219: 121345, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32887074

ABSTRACT

Capillary electrophoresis (CE) was hyphenated to multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) to determine the model age of a highly enriched uranium (HEU) sample using the 234U/230Th radiochronometer. The use of hydroxymethylbutyric acid (HMBA) as the CE electrolyte was investigated, and a complexation stacking method was developed to increase the thorium signal obtained. The age of the material was determined by measuring the 230Th content of the HEU sample using isotope dilution in conjunction with the CE-MC-ICP-MS protocol. The CE-MC-ICP-MS protocol and a standard offline protocol using gravitational chromatography both gave results in accordance within uncertainties with the production date of the HEU sample (March 1965). Liquid waste production was only of a few microliters with the use of CE. The hyphenation of CE with MC-ICP-MS render the measurement of the age of the HEU material in less than one day possible. Obtaining results in a timely fashion is of particular importance for nuclear forensics studies.

7.
Talanta ; 206: 120221, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514872

ABSTRACT

The 236U/238U isotope ratio is a widely used tracer, which provides information on source identification for safeguard purposes, nuclear forensic studies and environmental monitoring. This paper describes an original approach to determine 236U/238U ratios, below 10-8, in environmental samples by combination of ICP-MS/MS for 236U/238U ratio and multiple collector ICPMS measurements for 235U/238U and 234U/235U isotope ratios. Since the hydride form of UO+ (UOH+) is less prone to occur than UH+, we were focused on the oxidised forms of uranium in order to reduce hydride based-interferences in ICP-MS/MS. Then, in-cell ion-molecule reactions with O2 and CO2 were assessed to detect the uranium isotopes in mass-shift mode (Q1: U+ → Q2: UO+). The performances in terms of UO+ sensitivity and minimisation of hydride form of UO+ were evaluated using five different desolvating systems. The best conditions, using an Apex Ω or an Aridus system, produced uranium oxide hydride rate (235U16O1H+/235U16O+) of about 10-7 with O2 in the collision cell. The method was validated through measurements of two certified IRMM standards with 236U/238U isotope ratio of 1.245 × 10-7 and 1.052 × 10-8, giving results in agreement with certified reference values. The relative standard deviations on seven independent measurements for each standard were respectively of 1.5% and 6.2%. Finally, environmental samples corresponding to sediments from the radioactive contamination plume emitted by the Fukushima Daiichi Nuclear Power Plant accident were analysed after a well-established uranium chemical separation procedure. 236U/238U atomic ratios between 1.5 × 10-8 and 7 × 10-9 were obtained with a level accuracy lower than 20%.

8.
Analyst ; 144(20): 5928-5933, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31490474

ABSTRACT

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative. Here we present for the first time the accurate determination of Cu isotopic ratios in four main protein fractions from lysates of neuron-like human cells exposed in vitro to 10 µM of natural uranium for seven days. These protein fractions were isolated by Size Exclusion Chromatography and analysed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry to determine the Cu isotopic variations in each protein fraction with regard to the original cell lysate. Values obtained, expressed as δ65Cu, were -0.03 ± 0.14 ‰ (Uc, k = 2), -0.55 ± 0.20 ‰ (Uc, k = 2), -0.32 ± 0.21 ‰ (Uc, k = 2) and +0.84 ± 0.21 ‰ (Uc, k = 2) for the four fractions, satisfying the mass balance. The results obtained in this preliminary study pave the way for dedicated analytical developments to identify new specific disease biomarkers, to gain insight into stress-induced altered metabolic processes, as well as to decipher metabolic pathways of toxic elements.


Subject(s)
Copper/chemistry , Isotopes/chemistry , Neurons/chemistry , Neurons/drug effects , Proteins/chemistry , Uranium/pharmacology , Copper Radioisotopes , Humans , Mass Spectrometry/methods , Metabolomics/methods , Uranium/chemistry
9.
Chemosphere ; 225: 849-858, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30904765

ABSTRACT

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a major release of radionuclides into the environment. Compared to other radionuclides, few studies have investigated the fate of actinides in the environment. Accordingly, this research investigates the Pu composition in soil samples collected in paddy fields before and after the accident. Furthermore, the vertical distributions of Pu and U isotopic signatures, along with 137Cs activities, were measured in a sediment core collected in the Mano Dam reservoir, in the Fukushima Prefecture. Changes in the relative contributions of the major actinide sources (global fallout or FDNPP derived fallout) were investigated in sediment deposited in the reservoir. The distinct peak observed for all Pu isotope ratios (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) and for 137Cs concentrations in the sediment core was attributed to the Fukushima fallout, and coincided with the maximum atomic contribution of only 4.8 ±â€¯1.0% of Pu from the FDNPP. Furthermore, 236U/238U ratios measured in the sediment core remained close to the global fallout signature indicating there was likely no U from the FDNPP accident detected in the sediment core. More research is required on the environmental dynamics of trace actinides in landscapes closer to the FDNPP where there are likely to be greater abundances of FDNPP-derived Pu and U.


Subject(s)
Fukushima Nuclear Accident , Geologic Sediments/chemistry , Plutonium/analysis , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Cesium Radioisotopes/analysis , Japan , Nuclear Power Plants , Water Pollutants, Radioactive/analysis
10.
Sci Rep ; 8(1): 17163, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464301

ABSTRACT

The impact of natural uranium (U) on differentiated human neuron-like cells exposed to 1, 10, 125, and 250 µM of U for seven days was assessed. In particular, the effect of the U uptake on the homeostatic modulation of several endogenous elements (Mg, P, Mn, Fe, Zn, and Cu), the U isotopic fractionation upon its incorporation by the cells and the evolution of the intracellular Cu and Zn isotopic signatures were studied. The intracellular accumulation of U was accompanied by a preferential uptake of 235U for cells exposed to 1 and 10 µM of U, whereas no significant isotopic fractionation was observed between the extra- and the intracellular media for higher exposure U concentrations. The U uptake was also found to modulate the homeostasis of Cu, Fe, and Mn for cells exposed to 125 and 250 µM of U, but the intracellular Cu isotopic signature was not modified. The intracellular Zn isotopic signature was not modified either. The activation of the non-specific U uptake pathway might be related to this homeostatic modulation. All together, these results show that isotopic and quantitative analyses of toxic and endogenous elements are powerful tools to help deciphering the toxicity mechanisms of heavy metals.


Subject(s)
Metals/analysis , Neurons/chemistry , Neurons/metabolism , Phosphorus/analysis , Uranium/metabolism , Cell Line , Homeostasis , Humans
11.
Appl Radiat Isot ; 140: 157-162, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30015046

ABSTRACT

The radionuclide 129I is a long-lived fission product that decays to 129Xe by beta-particle emission. It is an important tracer in geological and biological processes and is considered one of the most important radionuclides to be assessed in studies of global circulation. It is also one of the major contributors to radiation dose from nuclear waste in a deep geological repository. Its half-life has been obtained by a combination of activity and mass concentration measurements in the frame of a cooperation of 6 European metrology institutes. The value obtained for the half-life of 129I is 16.14 (12) × 106 a, in good agreement with recommended data but with a significant improvement in the uncertainty.

12.
Anal Chem ; 90(14): 8622-8628, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29929369

ABSTRACT

Precise isotopic and elemental characterization of spent nuclear fuel is a major concern for the validation of the neutronic calculation codes and waste management strategy in the nuclear industry. Generally, the elements of interest, particularly U and Pu which are the two major elements present in spent fuel, are purified by ion exchange or extractant resins before off-line measurements by thermal ionization mass spectrometry. The aim of the present work was to develop a new analytical approach based on capillary electrophoresis (CE) hyphenated to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) for online isotope ratio measurements. An electrophoretic separation protocol of U, Pu, and the fraction containing fission products and minor actinides (Am and Cm) was developed using acetic acid as the electrolyte and complexing agent. The instrumentation for CE was designed to be used in a glovebox, and a laboratory-built interface was developed for hyphenation with MC-ICPMS. The separation was realized with only a few nL of a solution of spent nuclear fuel, and the reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by thermal ionization mass spectrometry (TIMS). This innovative protocol allowed a tremendous reduction of the analyte masses from µg to ng and also a drastic reduction of the liquid waste production from mL to µL. In addition, the time of analysis was shorted by at least a factor of three. All of these improved parameters are of major interest for nuclear applications.

13.
Talanta ; 178: 894-904, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136912

ABSTRACT

The monitoring of isotopic fractionations in in vitro cultured human cell samples is a very promising and under-exploited tool to help identify the metabolic processes leading to disease-induced isotopic fractionations or decipher metabolic pathways of toxic metals in these samples. One of the limitations is that the analytes are often present at small amounts, ranging from tens to hundreds of ng, thus making challenging low-uncertainty isotope ratio determinations. Here we present a new procedure for U, Cu and Zn purification and isotope ratio determinations in cultured human neuron-like cells exposed to natural U. A thorough study of the influence of the limiting factors impacting the uncertainty of δ238U, δ66Zn and δ65Cu is also carried out. These factors include the signal intensity, which determines the within-day measurement reproducibility, the procedural blank correction and the matrix effects, which determine the accuracy of the mass bias correction models. Given the small Cu and U amounts in the cell samples, 15-30 and 20ng respectively, a highly efficient sample introduction system was employed in order to improve the analyte transport to the plasma and, hence, the signal intensity. With this device, the procedural blanks became the main uncertainty source of δ238U and δ65Cu values, accounting over 65% of the overall uncertainty. The matrix effects gave rise to inaccuracies in the mass bias correction models for samples finally dissolved in the minimal volumes required for the analysis, 100-150µL, leading to biases for U and Cu. We will show how these biases can be cancelled out by dissolving the samples in volumes of at least 300µL for Cu and 450µL for U. Using our procedure, expanded uncertainties (k = 2) of around 0.35‰ for δ238U and 0.15‰ for δ66Zn and δ65Cu could be obtained. The analytical approach presented in this work is also applicable to other biological microsamples and can be extended to other elements and applications.


Subject(s)
Metals, Heavy/chemistry , Metals, Heavy/metabolism , Cells, Cultured , Copper/chemistry , Copper/metabolism , Humans , Isotopes , Neurons/cytology , Neurons/metabolism , Reproducibility of Results , Uranium/chemistry , Uranium/metabolism , Zinc/chemistry , Zinc/metabolism
14.
Talanta ; 162: 278-284, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27837830

ABSTRACT

The high-precision isotopic characterization of actinides and fission products in nuclear samples is fundamental for various applications such as the management of spent nuclear fuel or the validation of neutronic calculation codes. However multi-elemental isotope ratio measurements by mass spectrometric techniques are hampered by the presence of both spectral and non-spectral interferences as complex sample matrices are encountered in such topics, but also due to the lack of high precision mass spectrometers able to cover the entire mass spectrum. This work describes a new LC-MC-ICPMS approach allowing simultaneous high-precision and multi-elemental isotope ratio measurements of four fission products of interest for nuclear issues (Nd, Sm, Eu, Gd) within a single elution run. Variable motorized Faraday cup configurations were successively used during a specifically designed elution procedure in order to take into account the non-natural Nd, Sm, Eu, Gd isotopic compositions encountered in irradiated nuclear samples. This new method, involving the relevant isotopic reference standard injection timings for on-line mass bias corrections, was validated by the analysis of a simulated fission product fraction from a 235U-irradiated target. Reproducibilities better than 2‰ (k=2), comparable to those obtained by off-line measurements and the classic sample-standard bracketing mass bias correction approach, were obtained for all isotope ratios, except those involving isotopes with a transient signal peak apex lower than 100mV, for which the reproducibilities were comprised between 2‰ and 6‰.

15.
Proc Natl Acad Sci U S A ; 113(49): 14007-14012, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27872304

ABSTRACT

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.


Subject(s)
Chemical Fractionation/methods , Uranium/analysis , Cell Culture Techniques , Cell Line/metabolism , Humans , Isotopes , Neurons/metabolism , Uranium/metabolism
16.
Talanta ; 99: 586-93, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22967598

ABSTRACT

This study is a large project initiated by the French Nuclear Agency, and concerns the development of a new electrolyte system for the separation of lanthanides by isotachophoresis. This new system is based on a leading electrolyte that incorporates 2-hydroxy-2-methylbutyric acid as complexing agent. The optimization of separation conditions (complexing agent concentration, pH, capillary dimensions, injection conditions, and current intensity) performed by experiments on a commercial capillary instrument with contactless conductivity detection, which allows to improve the separation of 13 lanthanides (La to Lu, except Pm and Ho). We have also directly coupled the isotachophoresis to an inductively coupled plasma mass spectrometer to visualize the mono-elementary elution bands and demonstrate the potentiality of the method for isotope ratio measurements. The application to a simulated solution representative of a fraction of fission products present in a MOX spent fuel is presented in this paper to demonstrate the possible application in future on nuclear fuel samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...