Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
mSystems ; : e0013324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742890

ABSTRACT

The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify generally (on average) consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2,564 fecal samples from 538 subjects across all interventions. Short-term increases in dietary fiber consumption resulted in highly consistent gut bacterial community responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (vs 82% of variation attributed to the individual), reduced alpha-diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (on average, increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. IMPORTANCE: Our study is an example of the power of synthesizing and reanalyzing 16S rRNA microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change and the particular taxa that respond to increased fiber.

2.
Res Sq ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37674721

ABSTRACT

Background: The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2564 fecal samples from 538 subjects across all interventions. Results: Short-term increases in dietary fiber consumption resulted in highly consistent gut microbiome responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (versus 82% of variation attributed to the individual), reduced alpha diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. Conclusions: Our study is an example of the power of synthesizing and reanalyzing microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change as well as the particular taxa that respond to increased fiber.

3.
Sci Total Environ ; 899: 165524, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467971

ABSTRACT

Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and internal transcribed spacer gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. Goodness of fit to the neutral community model in relationship to microbial traits was evaluated. In summer, Actinobacteria and Bacteroidia increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via bacterial response to drought (response trait), beneficial effect on plants (effect trait), and likely stable mutualistic interactions with plants suggested by the frequency of nodule bacteria. For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.


Subject(s)
Mycobiome , Mycorrhizae , Ecosystem , Seasons , RNA, Ribosomal, 16S , Fungi , Bacteria , Stochastic Processes , Soil Microbiology , Plant Roots/microbiology
4.
Mol Ecol ; 31(8): 2475-2493, 2022 04.
Article in English | MEDLINE | ID: mdl-35152495

ABSTRACT

Mega-fires of unprecedented size, intensity and socio-economic impacts have surged globally due to climate change, fire suppression and development. Soil microbiomes are critical for post-fire plant regeneration and nutrient cycling, yet how mega-fires impact the soil microbiome remains unclear. We had a serendipitous opportunity to obtain pre- and post-fire soils from the same sampling locations after the 2016 Soberanes mega-fire burned with high severity throughout several of our established redwood-tanoak plots. This makes our study the first to examine microbial fire response in redwood-tanoak forests. We re-sampled soils immediately post-fire from two burned plots and one unburned plot to elucidate the effect of mega-fire on soil microbiomes. We used Illumina MiSeq sequencing of 16S and ITS1 sequences to determine that bacterial and fungal richness were reduced by 38%-70% in burned plots, with richness unchanged in the unburned plot. Fire altered composition by 27% for bacteria and 24% for fungi, whereas the unburned plots experienced no change in fungal and negligible change in bacterial composition. Pyrophilous taxa that responded positively to fire were phylogenetically conserved, suggesting shared evolutionary traits. For bacteria, fire selected for increased Firmicutes and Actinobacteria. For fungi, fire selected for the Ascomycota classes Pezizomycetes and Eurotiomycetes and for a Basidiomycota class of heat-resistant Geminibasidiomycete yeasts. We build from Grime's competitor-stress tolerator-ruderal (C-S-R) framework and its recent microbial applications to show how our results might fit into a trait-based conceptual model to help predict generalizable microbial responses to fire.


Subject(s)
Ascomycota , Fires , Sequoia , Bacteria/genetics , Ecosystem , Forests , Soil
5.
Environ Pollut ; 287: 117494, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34182387

ABSTRACT

Nitrous oxide (N2O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH3 oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N2O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N2O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH3 oxidizers and denitrifiers, including the previously-overlooked taxa, in N2O emission from a cropland, and address the biological and environmental factors controlling the N2O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N2O production than the long-studied ones. We also demonstrated that the N2O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N2O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N2O production by overlooked denitrifying bacteria and N2O reduction by long-studied N2O-reducing bacteria after manure fertilization into the plowed layer; and (3) N2O production by NH3-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH3 oxidizers and denitrifiers, which will help us understand the environmental context-dependent N2O emission processes.


Subject(s)
Nitrous Oxide , Soil , Ammonia , Crops, Agricultural , Denitrification , Nitrification , Nitrous Oxide/analysis , Soil Microbiology
6.
ISME J ; 15(8): 2427-2439, 2021 08.
Article in English | MEDLINE | ID: mdl-33664432

ABSTRACT

Nitrous oxide (N2O) is an important greenhouse gas and an ozone-depleting substance. Due to the long persistence of N2O in the atmosphere, the mitigation of anthropogenic N2O emissions, which are mainly derived from microbial N2O-producing processes, including nitrification and denitrification by bacteria, archaea, and fungi, in agricultural soils, is urgently necessary. Members of mesofauna affect microbial processes by consuming microbial biomass in soil. However, how microbial consumption affects N2O emissions is largely unknown. Here, we report the significant role of fungivorous mites, the major mesofaunal group in agricultural soils, in regulating N2O production by fungi, and the results can be applied to the mitigation of N2O emissions. We found that the application of coconut husks, which is the low-value part of coconut and is commonly employed as a soil conditioner in agriculture, to soil can supply a favorable habitat for fungivorous mites due to its porous structure and thereby increase the mite abundance in agricultural fields. Because mites rapidly consume fungal N2O producers in soil, the increase in mite abundance substantially decreases the N2O emissions from soil. Our findings might provide new insight into the mechanisms of soil N2O emissions and broaden the options for the mitigation of N2O emissions.


Subject(s)
Mites , Soil , Agriculture , Animals , Denitrification , Nitrification , Nitrous Oxide/analysis , Soil Microbiology
7.
Microbes Environ ; 35(4)2020.
Article in English | MEDLINE | ID: mdl-33028782

ABSTRACT

Nitrification-denitrification processes in the nitrogen cycle have been extensively examined in rice paddy soils. Nitrate is generally depleted in the reduced soil layer below the thin oxidized layer at the surface, and this may be attributed to high denitrification activity. In the present study, we investigated dissimilatory nitrate reduction to ammonium (DNRA), which competes with denitrification for nitrate, in order to challenge the conventional view of nitrogen cycling in paddy soils. We performed paddy soil microcosm experiments using 15N tracer analyses to assess DNRA and denitrification rates and conducted clone library analyses of transcripts of nitrite reductase genes (nrfA, nirS, and nirK) in order to identify the microbial populations carrying out these processes. The results obtained showed that DNRA occurred to a similar extent to denitrification and appeared to be enhanced by a nitrate limitation relative to organic carbon. We also demonstrated that different microbial taxa were responsible for these distinct processes. Based on these results and previous field observations, nitrate produced by nitrification within the surface oxidized layer may be reduced not only to gaseous N2 via denitrification, but also to NH4+ via DNRA, within the reduced layer. The present results also indicate that DNRA reduces N loss through denitrification and nitrate leaching and provides ammonium to rice roots in rice paddy fields.


Subject(s)
Ammonium Compounds/metabolism , Bacteria/metabolism , Nitrates/metabolism , Oryza/microbiology , Soil Microbiology , Bacteria/classification , Bacteria/isolation & purification , Denitrification , Japan , Nitrification , Oryza/growth & development , Soil/chemistry
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1798): 20190242, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32200749

ABSTRACT

Soil bacterial communities are altered by anthropogenic drivers such as climate change-related warming and fertilization. However, we lack a predictive understanding of how bacterial communities respond to such global changes. Here, we tested whether phylogenetic information might be more predictive of the response of bacterial taxa to some forms of global change than others. We analysed the composition of soil bacterial communities from perturbation experiments that simulated warming, drought, elevated CO2 concentration and phosphorus (P) addition. Bacterial responses were phylogenetically conserved to all perturbations. The phylogenetic depth of these responses varied minimally among the types of perturbations and was similar when merging data across locations, implying that the context of particular locations did not affect the phylogenetic pattern of response. We further identified taxonomic groups that responded consistently to each type of perturbation. These patterns revealed that, at the level of family and above, most groups responded consistently to only one or two types of perturbations, suggesting that traits with different patterns of phylogenetic conservation underlie the responses to different perturbations. We conclude that a phylogenetic approach may be useful in predicting how soil bacterial communities respond to a variety of global changes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.


Subject(s)
Climate Change , Conservation of Natural Resources , Microbiota , Phylogeny , Soil Microbiology , Global Warming
9.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31948954

ABSTRACT

Novoherbaspirillum sp. strain UKPF54, a plant growth-promoting rhizobacterium with the ability to mitigate nitrous oxide emission from agriculture soils, has been successfully isolated from paddy soil in Kumamoto, Japan. Here, we report the whole-genome sequence of this strain.

10.
Microbes Environ ; 35(1)2020.
Article in English | MEDLINE | ID: mdl-31996500

ABSTRACT

Recent studies demonstrated that phylogenetically more diverse and abundant bacteria and fungi than previously considered are responsible for denitrification in terrestrial environments. We herein examined the effects of land-use types on the community composition of those denitrifying microbes based on their nitrite reductase gene (nirK and nirS) sequences. These genes can be phylogenetically grouped into several clusters. We used cluster-specific PCR primers to amplify nirK and nirS belonging to each cluster because the most widely used primers only amplify genes belonging to a single cluster. We found that the dominant taxa as well as overall community composition of denitrifying bacteria and fungi, regardless of the cluster they belonged to, differed according to the land-use type. We also identified distinguishing taxa based on individual land-use types, the distribution of which has not previously been characterized, such as denitrifying bacteria or fungi dominant in forest soils, Rhodanobacter having nirK, Penicillium having nirK, and Bradyrhizobium having nirS. These results suggest that land-use management affects the ecological constraints and consequences of denitrification in terrestrial environments through the assembly of distinct communities of denitrifiers.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biodiversity , Fungi/classification , Fungi/metabolism , Microbiota , Soil Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Denitrification , Fungi/genetics , Fungi/isolation & purification , Genes, Bacterial , Genes, Fungal , Nitrite Reductases/genetics , Phylogeny
11.
ISME J ; 14(1): 12-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31481743

ABSTRACT

We tested the ecosystem functions of microbial diversity with a focus on ammonification (involving diverse microbial taxa) and nitrification (involving only specialized microbial taxa) in forest nitrogen cycling. This study was conducted on a forest slope, in which the soil environment and plant growth gradually changed. We measured the gross and net rates of ammonification and nitrification, the abundance of predicted ammonifiers and nitrifiers, and their community compositions in the soils. The abundance of predicted ammonifiers did not change along the soil environmental gradient, leading to no significant change in the gross ammonification rate. On the other hand,  the abundance of nitrifiers and the gross nitrification rate gradually changed. These accordingly determined the spatial distribution of net accumulation of ammonium and nitrate available to plants. The community composition of predicted ammonifiers gradually changed along the slope, implying that diverse ammonifiers were more likely to include taxa that were acclimated to the soil environment and performed ammonification at different slope locations than specialized nitrifiers. Our findings suggest that the abundance of ammonifiers and nitrifiers directly affects the corresponding nitrogen transformation rates, and that their diversity affects the stability of the rates against environmental changes. This study highlights the role of microbial diversity in biogeochemical processes under changing environments and plant growth.


Subject(s)
Ammonia/metabolism , Forests , Nitrification , Nitrogen Cycle , Soil Microbiology , Ammonium Compounds/metabolism , Biodiversity , Ecosystem , Nitrates/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Plants/metabolism , Soil/chemistry
12.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699760

ABSTRACT

Arthrobacter sp. strain UKPF54-2, a plant growth-promoting rhizobacterium having the potential ability to control fungal and bacterial pathogens, was isolated from paddy soil in Kumamoto, Japan. We report here the whole-genome sequence of this strain.

13.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395630

ABSTRACT

Azospirillum sp. strains TSA2S and TSH100 are plant growth-promoting rhizobacteria with the capacity to mitigate N2O from agricultural soil. They were isolated from the rhizosphere of paddy soil in Tokyo, Japan. Here, we present the genome sequences of these two strains.

14.
Nat Commun ; 10(1): 2499, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175309

ABSTRACT

Soil microbial communities are intricately linked to ecosystem functioning such as nutrient cycling; therefore, a predictive understanding of how these communities respond to environmental changes is of great interest. Here, we test whether phylogenetic information can predict the response of bacterial taxa to nitrogen (N) addition. We analyze the composition of soil bacterial communities in 13 field experiments across 5 continents and find that the N response of bacteria is phylogenetically conserved at each location. Remarkably, the phylogenetic pattern of N responses is similar when merging data across locations. Thus, we can identify bacterial clades - the size of which are highly variable across the bacterial tree - that respond consistently to N addition across locations. Our findings suggest that a phylogenetic approach may be useful in predicting shifts in microbial community composition in the face of other environmental changes.


Subject(s)
Bacteria/drug effects , Microbiota/drug effects , Nitrogen/pharmacology , Phylogeny , Soil Microbiology , Australia , Bacteria/genetics , China , Microbiota/genetics , RNA, Ribosomal, 16S , Soil , South Africa , Switzerland , United States
15.
Microbes Environ ; 33(3): 326-331, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30158366

ABSTRACT

Nitrite reductase is a key enzyme for denitrification. There are two types of nitrite reductases: copper-containing NirK and cytochrome cd1-containing NirS. Most denitrifiers possess either nirK or nirS, although a few strains been reported to possess both genes. We herein report the presence of nirK and nirS in the soil-denitrifying bacterium Bradyrhizobium sp. strain TSA1T. Both nirK and nirS were identified and actively transcribed under denitrification conditions. Based on physiological, chemotaxonomic, and genomic properties, strain TSA1T (=JCM 18858T=KCTC 62391T) represents a novel species within the genus Bradyrhizobium, for which we propose the name Bradyrhizobium nitroreducens sp. nov.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/enzymology , Denitrification/genetics , Nitrite Reductases/genetics , Soil Microbiology , Bradyrhizobium/genetics , Bradyrhizobium/physiology , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Gene Expression Regulation, Enzymologic , Genome, Bacterial/genetics , Molecular Sequence Annotation , Nitrates/metabolism , Oxygen , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Microbes Environ ; 33(3): 264-271, 2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30089740

ABSTRACT

A dissimilatory nitrate reduction to ammonium (DNRA) microbial community was developed under a high organic carbon to nitrate (C/NO3-) ratio in an anoxic semi-continuous sequencing batch reactor (SBR) fed with glucose as the source of carbon and NO3- as the electron acceptor. Activated sludge collected from a municipal wastewater treatment plant with good denitrification efficiency was used as the inoculum to start the system. The aim of this study was to examine the microbial populations in a high C/NO3- ecosystem for potential DNRA microorganisms, which are the microbial group with the ability to reduce NO3- to ammonium (NH4+). A low C/NO3- reactor was operated in parallel for direct comparisons of the microbial communities that developed under different C/NO3- values. The occurrence of DNRA in the high C/NO3- SBR was evidenced by stable isotope-labeled nitrate and nitrite (15NO3- and 15NO2-), which proved the formation of NH4+ from dissimilatory NO3-/NO2- reduction, in which both nitrogen oxides induced DNRA activity in a similar manner. An analysis of sludge samples with Illumina MiSeq 16S rRNA sequencing showed that the predominant microorganisms in the high C/NO3- SBR were related to Sulfurospirillum and the family Lachnospiraceae, which were barely present in the low C/NO3- system. A comparison of the populations and activities of the two reactors indicated that these major taxa play important roles as DNRA microorganisms under the high C/NO3- condition. Additionally, a beta-diversity analysis revealed distinct microbial compositions between the low and high C/NO3- SBRs, which reflected the activities observed in the two systems.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Carbon/chemistry , Carbon/metabolism , Nitrates/chemistry , Nitrates/metabolism , Quaternary Ammonium Compounds/metabolism , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Denitrification , Microbiota , Nitrites/metabolism , Nitrogen/metabolism , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sewage/microbiology
17.
Microbes Environ ; 32(2): 180-183, 2017 Jun 24.
Article in English | MEDLINE | ID: mdl-28442658

ABSTRACT

Waterlogged paddy soils possess anoxic zones in which microbes actively induce reductive nitrogen transformation (RNT). In the present study, a shotgun RNA sequencing analysis (metatranscriptomics) of paddy soil samples revealed that most RNT gene transcripts in paddy soils were derived from Deltaproteobacteria, particularly the genera Anaeromyxobacter and Geobacter. Despite the frequent detection of the rRNA of these microbes in paddy soils, their RNT-associated genes have rarely been identified in previous PCR-based studies. This metatranscriptomic analysis provides novel insights into the diversity of RNT microbes present in paddy soils and the ecological function of Deltaproteobacteria predominating in these soils.


Subject(s)
Deltaproteobacteria/metabolism , Gene Expression Profiling , Nitrogen/metabolism , Soil Microbiology , Oryza , Soil/chemistry , Transcriptome
18.
Environ Sci Technol ; 51(5): 2748-2756, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28164698

ABSTRACT

The goal of this study was to elucidate the mechanisms of nitrous oxide (N2O) production from a bioreactor for partial nitrification (PN). Ammonia-oxidizing bacteria (AOB) enriched from a sequencing batch reactor (SBR) were subjected to N2O production pathway tests. The N2O pathway test was initiated by supplying an inorganic medium to ensure an initial NH4+-N concentration of 160 mg-N/L, followed by 15NO2- (20 mg-N/L) and dual 15NH2OH (each 17 mg-N/L) spikings to quantify isotopologs of gaseous N2O (44N2O, 45N2O, and 46N2O). N2O production was boosted by 15NH2OH spiking, causing exponential increases in mRNA transcription levels of AOB functional genes encoding hydroxylamine oxidoreductase (haoA), nitrite reductase (nirK), and nitric oxide reductase (norB) genes. Predominant production of 45N2O among N2O isotopologs (46% of total produced N2O) indicated that coupling of 15NH2OH with 14NO2- produced N2O via N-nitrosation hybrid reaction as a predominant pathway. Abiotic hybrid N2O production was also observed in the absence of the AOB-enriched biomass, indicating multiple pathways for N2O production in a PN bioreactor. The additional N2O pathway test, where 15NH4+ was spiked into 400 mg-N/L of NO2- concentration, confirmed that the hybrid N2O production was a dominant pathway, accounting for approximately 51% of the total N2O production.


Subject(s)
Nitrites/metabolism , Nitrous Oxide/metabolism , Ammonia/metabolism , Bioreactors/microbiology , Hydroxylamine , Hydroxylamines , Oxidation-Reduction
19.
Front Microbiol ; 7: 214, 2016.
Article in English | MEDLINE | ID: mdl-26941732

ABSTRACT

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

20.
ISME J ; 10(9): 2184-97, 2016 09.
Article in English | MEDLINE | ID: mdl-26918664

ABSTRACT

We examined nitrification in the euphotic zone, its impact on the nitrogen cycles, and the controlling factors along a 7500 km transect from the equatorial Pacific Ocean to the Arctic Ocean. Ammonia oxidation occurred in the euphotic zone at most of the stations. The gene and transcript abundances for ammonia oxidation indicated that the shallow clade archaea were the major ammonia oxidizers throughout the study regions. Ammonia oxidation accounted for up to 87.4% (average 55.6%) of the rate of nitrate assimilation in the subtropical oligotrophic region. However, in the shallow Bering and Chukchi sea shelves (bottom ⩽67 m), the percentage was small (0-4.74%) because ammonia oxidation and the abundance of ammonia oxidizers were low, the light environment being one possible explanation for the low activity. With the exception of the shallow bottom stations, depth-integrated ammonia oxidation was positively correlated with depth-integrated primary production. Ammonia oxidation was low in the high-nutrient low-chlorophyll subarctic region and high in the Bering Sea Green Belt, and primary production in both was influenced by micronutrient supply. An ammonium kinetics experiment demonstrated that ammonia oxidation did not increase significantly with the addition of 31-1560 nm ammonium at most stations except in the Bering Sea Green Belt. Thus, the relationship between ammonia oxidation and primary production does not simply indicate that ammonia oxidation increased with ammonium supply through decomposition of organic matter produced by primary production but that ammonia oxidation might also be controlled by micronutrient availability as with primary production.


Subject(s)
Archaea/metabolism , Nitrification , Nitrogen Cycle , Ammonia/metabolism , Archaea/genetics , Arctic Regions , Oxidation-Reduction , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...