Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(9): 10441-10448, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468415

ABSTRACT

We demonstrate nonlinear microscopy of oriented nanowires using excitation beams with binary phase modulation. A simple and intuitive optical scheme comprising a spatial light modulator gives us the possibility to control the phase across an incident Hermite-Gaussian beam of order (1,0) (HG10 mode). This technique allows us to gradually vary the spatial distribution of the longitudinal electric fields in the focal volume, as demonstrated by second-harmonic generation from vertically-aligned GaAs nanowires. These results open new opportunities for the full control of polarization in the focal volume to enhance light interaction with nanostructured materials.

2.
Sci Rep ; 6: 37469, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27881838

ABSTRACT

Ion beam shaping is a novel and powerful tool to engineer nanocomposites with effective three-dimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix. Furthermore, we investigate individual nanorods using a nonlinear optical microscope based on second-harmonic generation (SHG). A tightly focused linearly or radially-polarized laser beam is used to excite nanorods with different orientations. We demonstrate high sensitivity of the SHG response for these polarizations to the orientation of the nanorods. The SHG measurements are in excellent agreement with the results of numerical modeling based on the boundary element method.

3.
Nat Commun ; 5: 3435, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24647049

ABSTRACT

Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 µm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device.


Subject(s)
Models, Chemical , Models, Molecular , Nanoparticles/chemistry , Phonons , Thermal Conductivity , Algorithms , Computer Simulation , Engineering/instrumentation , Engineering/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...