Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 214: 76-84, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26192099

ABSTRACT

Highly aggressive cancer types such as pancreatic cancer possess a mortality rate of up to 80% within the first 6months after diagnosis. To reduce this high mortality rate, more sensitive diagnostic tools allowing an early stage medical imaging of even very small tumours are needed. For this purpose, magnetic, biodegradable nanoparticles prepared using recombinant human serum albumin (rHSA) and incorporated iron oxide (maghemite, γ-Fe2O3) nanoparticles were developed. Galectin-1 has been chosen as target receptor as this protein is upregulated in pancreatic cancer and its precursor lesions but not in healthy pancreatic tissue nor in pancreatitis. Tissue plasminogen activator derived peptides (t-PA-ligands), that have a high affinity to galectin-1 have been chosen as target moieties and were covalently attached onto the nanoparticle surface. Improved targeting and imaging properties were shown in mice using single photon emission computed tomography-computer tomography (SPECT-CT), a handheld gamma camera, and magnetic resonance imaging (MRI).


Subject(s)
Magnetics , Magnetite Nanoparticles , Pancreatic Neoplasms/diagnosis , Animals , Cell Line, Tumor , Ferric Compounds/chemistry , Galectin 1/chemistry , Galectin 1/metabolism , Humans , Magnetic Resonance Imaging , Mice , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Radionuclide Imaging , Radiopharmaceuticals , Recombinant Proteins/chemistry , Serum Albumin/chemistry , Tissue Plasminogen Activator/metabolism , Tomography, Emission-Computed, Single-Photon , Xenograft Model Antitumor Assays
2.
Bioconjug Chem ; 26(8): 1692-701, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26056709

ABSTRACT

Silencing of RNA to knock down genes is currently one of the top priorities in gene therapies for cancer. However, to become practical the obstacle of RNA delivery needs to be solved. In this study, we used innovative maghemite (γ-Fe2O3) nanoparticles, termed magnetic reagent for efficient transfection (MagRET), which are composed of a maghemite core that is surface-doped by lanthanide Ce(3/4+) cations using sonochemistry. Thereafter, a polycationic polyethylenimine (PEI) polymer phase is bound to the maghemite core via coordinative chemistry enabled by the [CeL(n)](3/4+)cations/complex. PEI oxidation was used to mitigate the in vivo toxicity. Using this approach, silencing of 80-100% was observed for mRNAs, microRNAs, and lncRNA in a variety of cancer cells. MagRET NPs are advantageous in hard to transfect leukemias. This versatile nanoscale carrier can silence all known types of RNAs and these MagRET NPs with oxidized PEI are not lethal upon injection, thus holding promise for therapeutic applications, as a theranostic tool.


Subject(s)
Ferric Compounds/chemistry , Gene Silencing , Magnetite Nanoparticles/chemistry , MicroRNAs/genetics , Nanocomposites/chemistry , Polyethyleneimine/chemistry , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Animals , Apoptosis , Cell Cycle , Cell Proliferation , Drug Carriers , Humans , Mice , Mice, Inbred BALB C , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...