Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Genom Data ; 25(1): 47, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783201

ABSTRACT

OBJECTIVE: Burkholderia pseudomallei, the etiological cause of melioidosis, is a soil saprophyte endemic in South-East Asia, where it constitutes a public health concern of high-priority. Melioidosis cases are sporadically identified in nonendemic areas, usually associated with travelers or import of goods from endemic regions. Due to extensive intercontinental traveling and the anticipated climate change-associated alterations of the soil bacterial flora, there is an increasing concern for inadvertent establishment of novel endemic areas, which may expand the global burden of melioidosis. Rapid diagnosis, isolation and characterization of B. pseudomallei isolates is therefore of utmost importance particularly in non-endemic locations. DATA DESCRIPTION: We report the genome sequences of two novel clinical isolates (MWH2021 and MST2022) of B. pseudomallei identified in distinct acute cases of melioidosis diagnosed in two individuals arriving to Israel from India and Thailand, respectively. The data includes preliminary genetic analysis of the genomes determining their phylogenetic classification in rapport to the genomes of 131 B. pseudomallei strains documented in the NCBI database. Inspection of the genomic data revealed the presence or absence of loci encoding for several documented virulence determinants involved in the molecular pathogenesis of melioidosis. Virulence analysis in murine models of acute or chronic melioidosis established that both strains belong to the highly virulent class of B. pseudomalleii.


Subject(s)
Burkholderia pseudomallei , Genome, Bacterial , Melioidosis , Phylogeny , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/pathogenicity , Melioidosis/microbiology , Melioidosis/epidemiology , Thailand/epidemiology , Humans , Genome, Bacterial/genetics , India , Animals , Israel/epidemiology , Virulence/genetics , Mice , Whole Genome Sequencing
2.
Nat Commun ; 13(1): 2237, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35469023

ABSTRACT

The global spread of SARS-CoV-2 led to major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SARS-CoV-2 can provide insights into the virus pathogenesis, and facilitate the development of novel therapeutics. Here, employing a genome-scale CRISPR screen, we provide a comprehensive data-set of cellular factors that are exploited by wild type SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. We identified several host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination, Heparan sulfate biogenesis and host phosphatidylglycerol biosynthesis. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential proviral gene for all variants inspected. We show that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals shows elevated levels of GATA6, suggesting a role in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and inhibition of viral infectivity. Overall, we show GATA6 may represent a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , GATA6 Transcription Factor/genetics , Humans , Peptidyl-Dipeptidase A/metabolism , Proviruses/genetics , SARS-CoV-2/genetics
3.
Pathogens ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34451403

ABSTRACT

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20-30% loss of weight at day 7 and full recovery at days 11-13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.

4.
Nano Lett ; 21(11): 4774-4779, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34032435

ABSTRACT

The COVID-19 pandemic led to development of mRNA vaccines, which became a leading anti-SARS-CoV-2 immunization platform. Preclinical studies are limited to infection-prone animals such as hamsters and monkeys in which protective efficacy of vaccines cannot be fully appreciated. We recently reported a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). BALB/c mice demonstrated specific immunologic responses following RBD-hFc mRNA vaccination. Now, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18 human angiotensin-converting enzyme 2 (K18-hACE2) mouse model. Administration of an RBD-hFc mRNA vaccine to K18-hACE2 mice resulted in robust humoral responses comprising binding and neutralizing antibodies. In correlation with this response, 70% of vaccinated mice withstood a lethal SARS-CoV-2 dose, while all control animals succumbed to infection. To the best of our knowledge, this is the first nonreplicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Humans , Lipids , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pandemics , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Microorganisms ; 8(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33265965

ABSTRACT

We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.

6.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060276

ABSTRACT

Francisella tularensis is a highly infectious intracellular bacterium representing the causative agent of tularemia, a severe disease which requires prompt antibacterial intervention for mitigating its potential high mortality. Inhaled bacteria interact with lung cells belonging to various subpopulations, including those of the epithelium. As of today, the host epithelial response to inhalational infection with F. tularensis is poorly understood. Here, we announce host transcriptome data sets which systematically address the human epithelial response to F. tularensis at different time points postinfection.

7.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32855245

ABSTRACT

The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress.

8.
Nat Commun ; 11(1): 4303, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32855401

ABSTRACT

The novel highly transmissible human coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Thus far, there is no approved therapeutic drug specifically targeting this emerging virus. Here we report the isolation and characterization of a panel of human neutralizing monoclonal antibodies targeting the SARS-CoV-2 receptor binding domain (RBD). These antibodies were selected from a phage display library constructed using peripheral circulatory lymphocytes collected from patients at the acute phase of the disease. These neutralizing antibodies are shown to recognize distinct epitopes on the viral spike RBD. A subset of the antibodies exert their inhibitory activity by abrogating binding of the RBD to the human ACE2 receptor. The human monoclonal antibodies described here represent a promising basis for the design of efficient combined post-exposure therapy for SARS-CoV-2 infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Betacoronavirus/metabolism , Chlorocebus aethiops , Epitope Mapping , Epitopes , Humans , Peptide Library , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
10.
Cells ; 8(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443439

ABSTRACT

Diagnostic identification of pathogens is usually accomplished by isolation of the pathogen or its substances, and should correlate with the time and site of infection. Alternatively, immunoassays such as enzyme-linked immunosorbent assay (ELISA) tests for quantification of serum antibodies are expedient and are usually employed for retrospective diagnostic of a particular infective agent. Here, the potential of cell-based immunoassays for early pathogen detection was evaluated by quantification of specific, antigen-activated, low-frequency IFNγ-secreting cells in mouse spleens following infection with various pathogens. Using enzyme-linked immunospot (ELISPOT) assays, specific responses were observed within 3-6 days following infection with F. tularensis, B. anthracis, Y. pestis, or Influenza virus. Blood samples collected from F. tularensis-infected mice revealed the presence of IFNγ-producing activated cells within one week post infection. When non-human primates were infected with B. anthracis, cellular response was observed in peripheral blood samples as early as five days post infection, 3-5 days earlier than serum antibodies. Finally, the expression pattern of genes in splenocytes of F. tularensis-infected mice was inspected by a transcriptomic approach, enabling the identification of potential host targets for the future development of genetic-based cellular immunoassays. Altogether, the data demonstrate the potential of cell-based immunoassays for early pathogen detection.


Subject(s)
Bacterial Infections/diagnosis , Immunoassay , Leukocytes, Mononuclear/microbiology , Leukocytes, Mononuclear/virology , Virus Diseases/diagnosis , Animals , Early Diagnosis , Female , Leukocytes, Mononuclear/pathology , Macaca mulatta , Mice , Mice, Inbred C57BL
11.
Am J Trop Med Hyg ; 101(3): 580-584, 2019 09.
Article in English | MEDLINE | ID: mdl-31287043

ABSTRACT

A previously healthy young man presented with a chronic cavitary pulmonary infection that began while in Goa, India. Burkholderia pseudomallei was cultured from sputum samples. The infection fully resolved after prolonged antibiotic treatment. Other than traveling during the monsoon season, extensive use of well-water for water-pipe smoking of cannabis was identified as a possible risk factor for infection. This is one of the first reports of travel-associated melioidosis from India. Genomic and immunological characterization suggested that the B. pseudomallei isolate collected from the reported case exhibited limited similarity to other B. pseudomallei strains.


Subject(s)
Communicable Diseases, Imported/diagnosis , Melioidosis/diagnosis , Travel , Adult , Anti-Bacterial Agents/therapeutic use , Burkholderia pseudomallei/isolation & purification , Communicable Diseases, Imported/microbiology , Humans , India , Israel , Male , Melioidosis/drug therapy , Risk Factors , Sputum/microbiology
12.
Microbiol Resour Announc ; 8(19)2019 May 09.
Article in English | MEDLINE | ID: mdl-31072902

ABSTRACT

We report here the draft genome sequence of Burkholderia pseudomallei MAA2018. This highly virulent strain was isolated in 2018 from the first melioidosis case in Israel associated with recreational travel to Goa, India.

13.
Front Microbiol ; 10: 255, 2019.
Article in English | MEDLINE | ID: mdl-30833938

ABSTRACT

Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.

14.
Vaccine ; 35(44): 6030-6040, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28342664

ABSTRACT

We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrA<ΔhtrAΔcya<ΔhtrAΔlef<ΔhtrAΔlefΔcya) in attenuation - up to 108-fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (109 spores) or double doses (>107spores) of the most attenuated triple mutant strain SterneΔhtrAlefMUTΔcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 105spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30weeks, respectively.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/immunology , Bacillus anthracis/immunology , Bacterial Proteins/genetics , Genes, Bacterial/genetics , Serine Endopeptidases/genetics , Spores, Bacterial/immunology , Vaccines, Attenuated/immunology , Animals , Anthrax/prevention & control , Anthrax Vaccines/genetics , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacillus anthracis/genetics , Bacterial Proteins/immunology , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Female , Genes, Bacterial/immunology , Guinea Pigs , Humans , Mice , Mice, Inbred ICR , Mutation/genetics , Mutation/immunology , Rabbits , Serine Endopeptidases/immunology , Spores, Bacterial/genetics , Vaccination/methods , Vaccines, Attenuated/genetics , Virulence/genetics , Virulence/immunology
15.
Toxins (Basel) ; 8(8)2016 08 18.
Article in English | MEDLINE | ID: mdl-27548219

ABSTRACT

Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.


Subject(s)
Adenylyl Cyclases/metabolism , Antigens, Bacterial/metabolism , Bacillus anthracis/enzymology , Bacterial Toxins/metabolism , High-Throughput Screening Assays/methods , Adenosine Triphosphate/metabolism , Bacillus anthracis/genetics , Indoles/metabolism , Kinetics , Luciferases/metabolism , Luminescent Measurements , Pyrazines/metabolism , Reproducibility of Results
16.
Sci Rep ; 6: 18908, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732659

ABSTRACT

Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10-10(4)-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.


Subject(s)
Anthrax Vaccines , Bacillus anthracis/genetics , Bacillus anthracis/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Sequence Deletion , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Spores, Bacterial , Vaccines, Attenuated , Animals , Anthrax/immunology , Anthrax/microbiology , Anthrax/mortality , Anthrax/prevention & control , Antigens, Bacterial/biosynthesis , Bacillus anthracis/metabolism , Bacterial Toxins/biosynthesis , Disease Models, Animal , Gene Order , Genetic Loci , Guinea Pigs , Humans , Immunization , Mice , Phenotype , Rabbits , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...